咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是251-260 订阅
排序:
Learning Discriminative Representation For Facial Expression recognition From Uncertainties
Learning Discriminative Representation For Facial Expression...
收藏 引用
IEEE International Conference on Image Processing
作者: Xingyu Fan Zhongying Deng Kai Wang Xiaojiang Peng Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Recent progresses on Facial Expression recognition (FER) heavily rely on deep learning models trained with large scale datasets. However, large-scale facial expression datasets always suffer from annotation uncertaint... 详细信息
来源: 评论
New Moments Based Fuzzy Similarity Measure for Text Detection in Distorted Social Media Images  5th
New Moments Based Fuzzy Similarity Measure for Text Detectio...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Roy, Soumyadip Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Blumenstein, Michael Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Faculty of Engineering and Information Technology University of Technology Sydney Australia
A trend towards capturing or filming images using cellphone and sharing images on social media is a part and parcel of day to day activities of humans. When an image is forwarded several times in social media it may b... 详细信息
来源: 评论
A Dual-Space Framework for General Knowledge Distillation of Large Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Xue Zhang, Songming Liang, Yunlong Meng, Fandong Chen, Yufeng Xu, Jinan Zhou, Jie School of Computer Science and Technology Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence Beijing Jiaotong University Beijing100044 China Pattern Recognition Center WeChat AI Tencent Inc China
Knowledge distillation (KD) is a promising solution to compress large language models (LLMs) by transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance b... 详细信息
来源: 评论
PC-HMR: Pose calibration for 3d human mesh recovery from 2D images/videos
arXiv
收藏 引用
arXiv 2021年
作者: Luan, Tianyu Wang, Yali Zhang, Junhao Wang, Zhe Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China University of California Irvine United States
The end-to-end Human Mesh Recovery (HMR) approach (Kanazawa et al. 2018) has been successfully used for 3D body reconstruction. However, most HMR-based frameworks reconstruct human body by directly learning mesh param... 详细信息
来源: 评论
RBF-Softmax: Learning Deep Representative Prototypes with Radial Basis Function Softmax  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Zhang, Xiao Zhao, Rui Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Lab The Chinese University of Hong Kong Hong Kong SenseTime Research Hong Kong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Deep neural networks have achieved remarkable successes in learning feature representations for visual classification. However, deep features learned by the softmax cross-entropy loss generally show excessive intra-cl... 详细信息
来源: 评论
MAVEN-ERE: A Unified Large-scale Dataset for Event Coreference, Temporal, Causal, and Subevent Relation Extraction
MAVEN-ERE: A Unified Large-scale Dataset for Event Coreferen...
收藏 引用
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
作者: Wang, Xiaozhi Chen, Yulin Ding, Ning Peng, Hao Wang, Zimu Lin, Yankai Han, Xu Hou, Lei Li, Juanzi Liu, Zhiyuan Li, Peng Zhou, Jie Department of Computer Science and Technology BNRist Tsinghua University Beijing China Shenzhen International Graduate School Tsinghua University Beijing China THU-Siemens Ltd. China Joint Research Center for Industrial Intelligence and IoT Tsinghua University Beijing China Tsinghua University Beijing China Xi'an Jiaotong-Liverpool University Suzhou China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
The diverse relationships among real-world events, including coreference, temporal, causal, and subevent relations, are fundamental to understanding natural languages. However, two drawbacks of existing datasets limit... 详细信息
来源: 评论
Regional attention with architecture-rebuilt 3D network for RGB-D gesture recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Benjia Li, Yunan Wan, Jun Macau University of Science and Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China School of Computer Science and Technology Xidian Univeristy China Xi'an Key Laboratory of Big Data and Intelligent Vision China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Human gesture recognition has drawn much attention in the area of computer vision. However, the performance of gesture recognition is always influenced by some gesture-irrelevant factors like the background and the cl... 详细信息
来源: 评论
Chebyshev-Harmonic-Fourier-Moments and Deep CNNs for Detecting Forged Handwriting
Chebyshev-Harmonic-Fourier-Moments and Deep CNNs for Detecti...
收藏 引用
International Conference on pattern recognition
作者: Lokesh Nandanwar Palaiahnakote Shivakumara Sayani Kundu Umapada Pal Tong Lu Daniel Lopresti Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Science & Engineering Lehigh University Bethlehem PA USA
Recently developed sophisticated image processing techniques and tools have made easier the creation of high-quality forgeries of handwritten documents including financial and property records. To detect such forgerie... 详细信息
来源: 评论
UCPM: Uncertainty-Guided Cross-Modal Retrieval with Partially Mismatched Pairs
收藏 引用
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 2025年 PP卷 PP页
作者: Quanxing Zha Xin Liu Yiu-Ming Cheung Shu-Juan Peng Xing Xu Nannan Wang Huaqiao University Department of Computer Science Xiamen 361021 China Key Laboratory of Pattern Recognition and Computer Vision Xiamen 361021 China Huaqiao University Fujian Key Laboratory of Big Data Intelligence and Security Xiamen 361021 China Hong Kong Baptist University Department of Computer Science Hong Kong Huaqiao University Department of Artificial Intelligence Xiamen 361021 China Fujian Province University Key Laboratory of Computer Vision and Machine Learning (Huaqiao University) Xiamen 361021 China University of Electronic Science and Technology of China Center for Future Multimedia School of Computer Science and Engineering Chengdu 610051 China Xidian University State Key Laboratory of Integrated Services Networks Xi’an 710071 China
The manual annotation of perfectly aligned labels for cross-modal retrieval (CMR) is incredibly labor-intensive. As an alternative, the collection of co-occurring data pairs from the Internet is a remarkably cost-effe... 详细信息
来源: 评论
Neighbourhood-guided feature reconstruction for occluded person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Chen, Dapeng Zhao, Rui Chen, Haobin Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China
Person images captured by surveillance cameras are often occluded by various obstacles, which lead to defective feature representation and harm person re-identification (Re-ID) performance. To tackle this challenge, w... 详细信息
来源: 评论