咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是271-280 订阅
排序:
A New DCT-FFT Fusion Based Method for Caption and Scene Text Classification in Action Video Images  1
收藏 引用
2nd International Conference on pattern recognition and Artificial Intelligence, ICPRAI 2020
作者: Nandanwar, Lokesh Shivakumara, Palaiahnakote Manna, Suvojit Pal, Umapada Lu, Tong Blumenstein, Michael Faculty of Computer Science and Information Technology University of Malayasia Kuala Lumpur Malaysia Department of Computer Science and Engineering Jalpaiguri Government Engineering College Jalpaiguri India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University Nanjing China University of Technology Sydney Ultimo Australia
Achieving better recognition rate for text in video action images is challenging due to multi-type texts with unpredictable backgrounds. We propose a new method for the classification of captions (which is edited text... 详细信息
来源: 评论
Local gradient difference features for classification of 2D-3D natural scene text images  25
Local gradient difference features for classification of 2D-...
收藏 引用
25th International Conference on pattern recognition, ICPR 2020
作者: Nandanwar, Lokesh Shivakumara, Palaiahnakote Raghavendra, Ramachandra Lu, Tong Pal, Umapada Lopresti, Daniel Anuar, Nor Badrul Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Computer Science and Engineering Lehigh University BethlehemPA United States
Methods developed for normal 2D text detection do not work well for text that is rendered using decorative, 3D effects, etc. This paper proposes a new method for classification of 2D and 3D natural scene text images s... 详细信息
来源: 评论
Tensor Low-Rank Reconstruction for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Chen, Wanli Zhu, Xinge Sun, Ruoqi He, Junjun Li, Ruiyu Shen, Xiaoyong Yu, Bei The Chinese University of Hong Kong New Territories Hong Kong Shanghai Jiao Tong University Shanghai China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SmartMore Shenzhen China
Context information plays an indispensable role in the success of semantic segmentation. Recently, non-local self-attention based methods are proved to be effective for context information collection. Since the desire... 详细信息
来源: 评论
PPT Fusion: Pyramid Patch Transformer for a Case Study in Image Fusion
arXiv
收藏 引用
arXiv 2021年
作者: Fu, Yu Xu, Tianyang Wu, Xiao-Jun Kittler, Josef Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
The Transformer architecture has witnessed a rapid development in recent years, outperforming the CNN architectures in many computer vision tasks, as exemplified by the vision Transformers (ViT) for image classificati... 详细信息
来源: 评论
2D+3D facial expression recognition via embedded tensor manifold regularization
arXiv
收藏 引用
arXiv 2022年
作者: Fu, Yunfang Ruan, Qiuqi Luo, Ziyan An, Gaoyun Jin, Yi Wan, Jun School of Computer Science and Engineering Shijiazhuang University Shijiazhuang050035 China Institute of Information Science Beijing Jiaotong University Beijing100044 China Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China Department of Mathematics Beijing Jiaotong University Beijing100044 China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China
In this paper, a novel approach via embedded tensor manifold regularization for 2D+3D facial expression recognition (FERETMR) is proposed. Firstly, 3D tensors are constructed from 2D face images and 3D face shape mode... 详细信息
来源: 评论
RFN-Nest: An end-to-end residual fusion network for infrared and visible images
arXiv
收藏 引用
arXiv 2021年
作者: Li, Hui Wu, Xiao-Jun Kittler, Josef Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China The Center for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
In the image fusion field, the design of deep learning-based fusion methods is far from routine. It is invariably fusion-task specific and requires a careful consideration. The most difficult part of the design is to ... 详细信息
来源: 评论
EDEN: Deep feature distribution pooling for Saimaa ringed seals pattern matching
arXiv
收藏 引用
arXiv 2021年
作者: Chelak, Ilia Nepovinnykh, Ekaterina Eerola, Tuomas Kälviäinen, Heikki Belykh, Igor Peter the Great St. Petersburg Polytechnic University Saint Petersburg Russia Lappeenranta-Lahti University of Technology LUT School of Engineering Science Department of Computational Engineering Computer Vision and Pattern Recognition Laboratory P.O.Box 20 Lappeenranta53850 Finland
In this paper, pelage pattern matching is considered to solve the individual re-identification of the Saimaa ringed seals. Animal re-identification together with the access to large amount of image material through ca... 详细信息
来源: 评论
Learning to predict context-adaptive convolution for semantic segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianbo He, Junjun Ren, Jimmy S. Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Laboratory Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SenseTime Research
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods [34] demonstrate that using global context for re-weighting feature channels c... 详细信息
来源: 评论
A win-win deal: towards sparse and robust pre-trained language models  22
A win-win deal: towards sparse and robust pre-trained langua...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Yuanxin Liu Fandong Meng Zheng Lin Jiangnan Li Peng Fu Yanan Cao Weiping Wang Jie Zhou Institute of Information Engineering Chinese Academy of Sciences and MOE Key Laboratory of Computational Linguistics Peking University and School of Computer Science Peking University Pattern Recognition Center WeChat AI Tencent Inc China Institute of Information Engineering Chinese Academy of Sciences and School of Cyber Security University of Chinese Academy of Sciences Institute of Information Engineering Chinese Academy of Sciences
Despite the remarkable success of pre-trained language models (PLMs), they still face two challenges: First, large-scale PLMs are inefficient in terms of memory footprint and computation. Second, on the downstream tas...
来源: 评论
Self-slimmed vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论