咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是291-300 订阅
排序:
FD-GAN: Generative adversarial networks with fusion-discriminator for single image dehazing
arXiv
收藏 引用
arXiv 2020年
作者: Dong, Yu Liu, Yihao Zhang, He Chen, Shifeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China Adobe Inc.
Recently, convolutional neural networks (CNNs) have achieved great improvements in single image dehazing and attained much attention in research. Most existing learning-based dehazing methods are not fully end-to-end,... 详细信息
来源: 评论
Differentiable neural architecture learning for efficient neural network design
arXiv
收藏 引用
arXiv 2021年
作者: Guo, Qingbei Wu, Xiao-Jun Kittler, Josef Feng, Zhiquan Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Shandong Provincial Key Laboratory of Network based Intelligent Computing University of Jinan Jinan250022 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Automated neural network design has received ever-increasing attention with the evolution of deep convolutional neural networks (CNNs), especially involving their deployment on embedded and mobile platforms. One of th... 详细信息
来源: 评论
Towards accurate scene text recognition with semantic reasoning networks
arXiv
收藏 引用
arXiv 2020年
作者: Yu, Deli Li, Xuan Zhang, Chengquan Liu, Tao Han, Junyu Liu, Jingtuo Ding, Errui School of Artificial Intelligence University of Chinese Academy of Sciences Department of Computer Vision Technology Baidu Inc National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
Scene text image contains two levels of contents: visual texture and semantic information. Although the previous scene text recognition methods have made great progress over the past few years, the research on mining ... 详细信息
来源: 评论
An Optimizing Parameters and Feature Selection in SVM Based on Improved Cockroach Swarm Optimization  16th
An Optimizing Parameters and Feature Selection in SVM Based ...
收藏 引用
16th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2020 in conjunction with the 13th International Conference on Frontiers of Information Technology, Applications and Tools, FITAT 2020
作者: Nguyen, Trong-The Yu, Jie Nguyen, Thi-Thanh-Tan Lai, Quoc-Anh Ngo, Truong-Giang Dao, Thi-Kien Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fuzhou China College of Mechanical and Automotive Engineering Fujian University of Technology Fuzhou China Information Technology Faculty Electric Power University Hanoi Viet Nam Department of Pattern Recognition & Image Processing Institute of Information Technology Vietnam Academy of Science and Technology Hanoi Viet Nam Faculty of Computer Science and Engineering Thuyloi University 175 Tay Son Dong Da Hanoi Viet Nam
This study improves a classifier of the support vector machine (SVM) by optimizing its parameters by adjusting cockroach swarm optimization (CSO). Classification system design includes data inputs, pre-process, and cl... 详细信息
来源: 评论
EfficientFCN: Holistically-guided decoding for semantic segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
Talking Face Generation via Learning Semantic and Temporal Synchronous Landmarks
Talking Face Generation via Learning Semantic and Temporal S...
收藏 引用
International Conference on pattern recognition
作者: Aihua Zheng Feixia Zhu Hao Zhu Mandi Luo Ran He Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Heifei China Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition (NLPR) CASIA Beijing China Center for Excellence in Brain Science and Intelligence Technology CAS Beijing China
Given a speech clip and facial image, the goal of talking face generation is to synthesize a talking face video with accurate mouth synchronization and natural face motion. Recent progress has proven the effectiveness... 详细信息
来源: 评论
A New U-Net Based License Plate Enhancement Model in Night and Day Images  5th
A New U-Net Based License Plate Enhancement Model in Night a...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Chowdhury, Pinaki Nath Shivakumara, Palaiahnakote Raghavendra, Ramachandra Pal, Umapada Lu, Tong Blumenstein, Michael Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Gjøvik Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Faculty of Engineering and Information Technology University of Technology Sydney Ultimo Australia
A new trend of smart city development opens up many challenges. One such issue is that automatic vehicle driving and detection for toll fee payment in night or limited light environments. This paper presents a new wor... 详细信息
来源: 评论
Structure Function Based Transform Features for Behavior-Oriented Social Media Image Classification  5th
Structure Function Based Transform Features for Behavior-Ori...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Krishnani, Divya Shivakumara, Palaiahnakote Lu, Tong Pal, Umapada Ramachandra, Raghavendra International Institute of Information Technology Naya Raipur Naya RaipurChhattisgarh India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Information Technology and Electrical Engineering Norwegian University of Science and Technology Trondheim Norway
Social media has become an essential part of people to reflect their day to day activities including emotions, feelings, threatening and so on. This paper presents a new method for the automatic classification of beha... 详细信息
来源: 评论
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
Towards Accurate Scene Text recognition With Semantic Reasoning Networks
Towards Accurate Scene Text Recognition With Semantic Reason...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Deli Yu Xuan Li Chengquan Zhang Tao Liu Junyu Han Jingtuo Liu Errui Ding School of Artificial Intelligence University of Chinese Academy of Sciences National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Department of Computer Vision Technology(VIS) Baidu Inc.
Scene text image contains two levels of contents: visual texture and semantic information. Although the previous scene text recognition methods have made great progress over the past few years, the research on mining ... 详细信息
来源: 评论