咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是311-320 订阅
排序:
Learning Attentive Pairwise Interaction for Fine-Grained Classification
arXiv
收藏 引用
arXiv 2020年
作者: Zhuang, Peiqin Wang, Yali Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Fine-grained classification is a challenging problem, due to subtle differences among highly-confused categories. Most approaches address this difficulty by learning discriminative representation of individual input i... 详细信息
来源: 评论
A novel TSK fuzzy system incorporating multiview collaborative transfer learning for personalized epileptic EEG detection
arXiv
收藏 引用
arXiv 2021年
作者: Li, Andong Deng, Zhaohong Lou, Qiongdan Choi, Kup-Sze Shen, Hongbin Wang, Shitong School of Artificial Intelligence and Computer Science Jiangnan University Jiangsu Key Laboratory of Digital Design and Software Technology Wuxi214122 China Centre for Smart Health Hong Kong Polytechnic University Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China
—In clinical practice, electroencephalography (EEG) plays an important role in the diagnosis of epilepsy. EEG-based computer-aided diagnosis of epilepsy can greatly improve the accuracy of epilepsy detection while re... 详细信息
来源: 评论
Enhanced quadratic video interpolation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Yihao Xie, Liangbin Siyao, Li Sun, Wenxiu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SenseTime Research
With the prosperity of digital video industry, video frame interpolation has arisen continuous attention in computer vision community and become a new upsurge in industry. Many learning-based methods have been propose... 详细信息
来源: 评论
Visual compositional learning for Human-Object interaction detection
arXiv
收藏 引用
arXiv 2020年
作者: Hou, Zhi Peng, Xiaojiang Qiao, Yu Tao, Dacheng UBTECH Sydney AI Centre School of Computer Science Faculty of Engineering University of Sydney DarlingtonNSW2008 Australia Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Human-Object interaction (HOI) detection aims to localize and infer relationships between human and objects in an image. It is challenging because an enormous number of possible combinations of objects and verbs types... 详细信息
来源: 评论
Multiple Transfer Learning and Multi-label Balanced Training Strategies for Facial AU Detection In the Wild
Multiple Transfer Learning and Multi-label Balanced Training...
收藏 引用
IEEE computer Society Conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Sijie Ji Kai Wang Xiaojiang Peng Jianfei Yang Zhaoyang Zeng Yu Qiao Nanyang Technological University Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science Sun Yat-Sen University China
This paper 1 presents SIAT-NTU solution and results of facial action unit (AU) detection in the EmotiNet Challenge 2020. The task aims to detect 23 AUs from facial images in the wild, and its main difficulties lie in... 详细信息
来源: 评论
A learning-based method for online adjustment of C-arm cone-beam CT source trajectories for artifact avoidance
arXiv
收藏 引用
arXiv 2020年
作者: Thies, Mareike Zäch, Jan-Nico Gao, Cong Taylor, Russell Navab, Nassir Maier, Andreas Unberath, Mathias Laboratory for Computational Sensing + Robotics Johns Hopkins University BaltimoreMD United States Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Computer Vision Laboratory Eidgenössische Technische Hochschule Zürich
Purpose: During spinal fusion surgery, screws are placed close to critical nerves suggesting the need for highly accurate screw placement. Verifying screw placement on high-quality tomographic imaging is essential. C-... 详细信息
来源: 评论
Cross-receptive Focused Inference Network for Lightweight Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Zhou, Jiantao Yang, Jian Qi, Guo-Jun The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The School of Communication and Information Engineering Shanghai University Shanghai200444 China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing210094 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science Faculty of Science and Technology University of Macau 999078 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Research Center for Industries of the Future The School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States
Recently, Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks due to the ability of global feature extraction. However, the capabilities of Transformers that need ... 详细信息
来源: 评论
Suppressing Uncertainties for Large-Scale Facial Expression recognition
Suppressing Uncertainties for Large-Scale Facial Expression ...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Kai Wang Xiaojiang Peng Jianfei Yang Shijian Lu Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Nanyang Technological University Singapore
Annotating a qualitative large-scale facial expression dataset is extremely difficult due to the uncertainties caused by ambiguous facial expressions, low-quality facial images, and the subjectiveness of annotators. T... 详细信息
来源: 评论
Suppressing uncertainties for large-scale facial expression recognition
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Kai Peng, Xiaojiang Yang, Jianfei Lu, Shijian Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Nanyang Technological University Singapore
Annotating a qualitative large-scale facial expression dataset is extremely difficult due to the uncertainties caused by ambiguous facial expressions, low-quality facial images, and the subjectiveness of annotators. T... 详细信息
来源: 评论
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-Identification
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Shijie Yu Shihua Li Dapeng Chen Rui Zhao Junjie Yan Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Institute of Microelectronics of the Chinese Academy of Sciences
Recent years have witnessed great progress in person re-identification (re-id). Several academic benchmarks such as Market1501, CUHK03 and DukeMTMC play important roles to promote the re-id research. To our best knowl... 详细信息
来源: 评论