咨询与建议

限定检索结果

文献类型

  • 300 篇 会议
  • 285 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 406 篇 工学
    • 277 篇 计算机科学与技术...
    • 252 篇 软件工程
    • 104 篇 信息与通信工程
    • 75 篇 生物工程
    • 70 篇 光学工程
    • 49 篇 机械工程
    • 43 篇 控制科学与工程
    • 43 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 258 篇 理学
    • 100 篇 物理学
    • 99 篇 数学
    • 89 篇 生物学
    • 31 篇 统计学(可授理学、...
    • 25 篇 化学
    • 13 篇 系统科学
    • 6 篇 海洋科学
  • 115 篇 管理学
    • 66 篇 图书情报与档案管...
    • 55 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 24 篇 医学
    • 21 篇 临床医学
    • 20 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 教育学
  • 5 篇 经济学
  • 5 篇 艺术学
  • 3 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 21 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 18 篇 training
  • 16 篇 face recognition
  • 15 篇 deep learning
  • 15 篇 image segmentati...
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 13 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 11 篇 shape
  • 10 篇 face
  • 9 篇 generative adver...
  • 9 篇 three-dimensiona...
  • 9 篇 benchmark testin...
  • 8 篇 object detection

机构

  • 47 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 28 篇 shenzhen key lab...
  • 27 篇 national laborat...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 shanghai artific...
  • 14 篇 xiamen key labor...
  • 14 篇 pattern recognit...
  • 12 篇 college of compu...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 gaoling school o...

作者

  • 63 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 23 篇 zhou jie
  • 23 篇 liu xin
  • 21 篇 umapada pal
  • 21 篇 wang da-han
  • 20 篇 wang yali
  • 20 篇 pal umapada
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 15 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 zhu shunzhi
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun

语言

  • 543 篇 英文
  • 42 篇 其他
  • 8 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是351-360 订阅
排序:
Multi-dimension modulation for image restoration with dynamic controllable residual Learning
arXiv
收藏 引用
arXiv 2019年
作者: He, Jingwen Dong, Chao Qiaoy, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Based on the great success of deterministic learning, to interactively control the output effects has attracted increasingly attention in the image restoration field. The goal is to generate continuous restored images... 详细信息
来源: 评论
The equipment nameplate dataset for scene text detection and recognition
The equipment nameplate dataset for scene text detection and...
收藏 引用
2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
作者: Chen, Xiaolong Zhang, Zhengfu Qiao, Yu Zhang, Pu Guo, Lanqing Chen, Wenrui Chen, Chen Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
In this paper, we introduce the Equipment Nameplate Dataset, a large dataset for scene text detection and recognition. Natural images in this dataset are taken in the wild and thus this dataset includes various intra-... 详细信息
来源: 评论
Orientation robust scene text recognition in natural scene
Orientation robust scene text recognition in natural scene
收藏 引用
2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
作者: Chen, Xiaolong Zhang, Zhengfu Qiao, Yu Lai, Jiangyu Jiang, Jian Zhang, Zeyu Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
In recent years, scene text recognition has achieved significant improvement and various state-of-the-art recognition approaches have been proposed. This paper focused on recognizing text in natural photos of equipmen... 详细信息
来源: 评论
Self-grouping convolutional neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Guo, Qingbei Wu, Xiao-Jun Kittler, Josef Feng, Zhiquan Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Shandong Provincial Key Laboratory of Network based Intelligent Computing University of Jinan Jinan250022 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Although group convolution operators are increasingly used in deep convolutional neural networks to improve the computational efficiency and to reduce the number of parameters, most existing methods construct their gr... 详细信息
来源: 评论
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Data Science Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
Multi-View Partial (MVP) Point Cloud Challenge 2021 on Completion and Registration: Methods and Results
arXiv
收藏 引用
arXiv 2021年
作者: Pan, Liang Wu, Tong Cai, Zhongang Liu, Ziwei Yu, Xumin Rao, Yongming Lu, Jiwen Zhou, Jie Xu, Mingye Luo, Xiaoyuan Fu, Kexue Gao, Peng Wang, Manning Wang, Yali Qiao, Yu Zhou, Junsheng Wen, Xin Xiang, Peng Liu, Yu-Shen Han, Zhizhong Yan, Yuanjie An, Junyi Zhu, Lifa Lin, Changwei Liu, Dongrui Li, Xin Gómez-Fernández, Francisco Wang, Qinlong Yang, Yang S-Lab Nanyang Technological University Singapore SenseTime-CUHK Joint Lab The Chinese University of Hong Kong Hong Kong Sensetime Research Shanghai AI Laboratory China Department of Automation Tsinghua University China University of Chinese Academy of Sciences China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Digital Medical Research Center School of Basic Medical Science Fudan University China School of Software BNRist Tsinghua University China *** Wayne State University State Key Laboratory for Novel Software Technology Nanjing University China DeepGlint Shanghai Jiao Tong University China Sichuan University China Xi'an Jiaotong University China
As real-scanned point clouds are mostly partial due to occlusions and viewpoints, reconstructing complete 3D shapes based on incomplete observations becomes a fundamental problem for computer vision. With a single inc... 详细信息
来源: 评论
Orientation Robust Scene Text recognition in Natural Scene*
Orientation Robust Scene Text Recognition in Natural Scene*
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Xiaolong Chen Zhengfu Zhang Yu Qiao Jiangyu Lai Jian Jiang Zeyu Zhang Bin Fu Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China ShenZhen Key Lab of Computer Vision and Pattern Recognition Chinese Academy of Sciences
In recent years, scene text recognition has achieved significant improvement and various state-of-the-art recognition approaches have been proposed. This paper focused on recognizing text in natural photos of equipmen...
来源: 评论
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reconstruction
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reco...
收藏 引用
International Conference on computer vision (ICCV)
作者: Xiaoxing Zeng Xiaojiang Peng Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology University of Chinese Academy of Sciences China
Reconstructing the detailed geometric structure from a single face image is a challenging problem due to its ill-posed nature and the fine 3D structures to be recovered. This paper proposes a deep Dense-Fine-Finer Net... 详细信息
来源: 评论
TTPP: Temporal transformer with progressive prediction for efficient action anticipation
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Su, Yanzhou Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Video action anticipation aims to predict future action categories from observed frames. Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states,... 详细信息
来源: 评论
Learning to learn a cold-start sequential recommender
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Xiaowen Sang, Jitao Yu, Jian Xu, Changsheng School of Computer and Information Technology Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Haidian Qu Shi Beijing China National Lab of Pattern Recognition Institute of Automation Chinese Academy of Sciences 95 Zhongguancun Rd Haidian Qu Shi Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences 80 Zhongguancun Rd Haidian Qu Shi Beijing China Peng Cheng Laboratory Shenzhen China
The cold-start recommendation is an urgent problem in contemporary online applications. It aims to provide users whose behaviors are literally sparse with as accurate recommendations as possible. Many data-driven algo... 详细信息
来源: 评论