咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是371-380 订阅
排序:
Learning to avoid poor images: Towards task-aware C-arm cone-beam CT trajectories
arXiv
收藏 引用
arXiv 2019年
作者: Zaech, Jan-Nico Gao, Cong Bier, Bastian Taylor, Russell Maier, Andreas Navab, Nassir Unberath, Mathias Laboratory for Computational Sensing and Robotics Johns Hopkins University Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Computer Vision Laboratory Eidgenössische Technische Hochschule Zürich
Metal artifacts in computed tomography (CT) arise from a mismatch between physics of image formation and idealized assumptions during tomographic reconstruction. These artifacts are particularly strong around metal im... 详细信息
来源: 评论
Robust Text Line Detection in Equipment Nameplate Images*
Robust Text Line Detection in Equipment Nameplate Images*
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Jiangyu Lai Lanqing Guo Yu Qiao Xiaolong Chen Zhengfu Zhang Canping Liu Ying Li Bin Fu Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
Scene text detection for equipment nameplates in the wild is important for equipment inspection robot since it enables inspection robot to take specific actions for different equipment's. Although text detection i...
来源: 评论
Box-driven Class-wise Region Masking and Filling Rate Guided Loss for Weakly Supervised Semantic Segmentation
Box-driven Class-wise Region Masking and Filling Rate Guided...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: Chunfeng Song Yan Huang Wanli Ouyang Liang Wang Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition (NLPR) Institute of Automation Chinese Academy of Sciences (CASIA) The University of Sydney SenseTime Computer Vision Research Group
Semantic segmentation has achieved huge progress via adopting deep Fully Convolutional Networks (FCN). However, the performance of FCN based models severely rely on the amounts of pixel-level annotations which are exp... 详细信息
来源: 评论
Frame attention networks for facial expression recognition in videos
arXiv
收藏 引用
arXiv 2019年
作者: Meng, Debin Peng, Xiaojiang Wang, Kai Qiao, Yu Shenzhen Institutes of Advanced Technology Chinese Academy of Science Shenzhen China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen China University of Chinese Academy of Sciences Beijing China
The video-based facial expression recognition aims to classify a given video into several basic emotions. How to integrate facial features of individual frames is crucial for this task. In this paper, we propose the F... 详细信息
来源: 评论
RankSRGAN: Generative adversarial networks with ranker for image super-resolution
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Wenlong Liu, Yihao Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论
Affine Non-negative Collaborative Representation Based pattern Classification
arXiv
收藏 引用
arXiv 2020年
作者: Yin, He-Feng Wu, Xiao-Jun Feng, Zhen-Hua Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Department of Computer Science University of Surrey GuildfordGU2 7XH United Kingdom Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
—During the past decade, representation-based classification methods have received considerable attention in pattern recognition. In particular, the recently proposed non-negative representation based classification ... 详细信息
来源: 评论
A comprehensive study on temporal modeling for online action detection
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
—Online action detection (OAD) is a practical yet challenging task, which has attracted increasing attention in recent years. A typical OAD system mainly consists of three modules: a frame-level feature extractor whi... 详细信息
来源: 评论
ICDAR2019 robust reading challenge on multi-lingual scene text detection and recognition-RRC-MLT-2019  15
ICDAR2019 robust reading challenge on multi-lingual scene te...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Nayef, Nibal Liu, Cheng-Lin Ogier, Jean-Marc Patel, Yash Busta, Michal Chowdhury, Pinaki Nath Karatzas, Dimosthenis Khlif, Wafa Matas, Jiri Pal, Umapada Burie, Jean-Christophe L3i Laboratory University of la Rochelle France Computer Vision Center Universitat Autonoma de Barcelona Spain CVPR Unit Indian Statistical Institute India Robotics Institute Carnegie Mellon Universiry Pittsburgh United States Center for Machine Perception Department of Cybernetics Czech Technical University Prague Czech Republic National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences China
With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and pu... 详细信息
来源: 评论
BasicVSR: The search for essential components in video super-resolution and beyond
arXiv
收藏 引用
arXiv 2020年
作者: Chan, Kelvin C.K. Wang, Xintao Yu, Ke Dong, Chao Loy, Chen Change S-Lab Nanyang Technological University Singapore Applied Research Center Tencent PCG CUHK – SenseTime Joint Lab Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video super-resolution (VSR) approaches tend to have more components than the image counterparts as they need to exploit the additional temporal dimension. Complex designs are not uncommon. In this study, we wish to u... 详细信息
来源: 评论
Suppressing Model Overfitting for Image Super-Resolution Networks
Suppressing Model Overfitting for Image Super-Resolution Net...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition Workshops
作者: Ruicheng Feng Jinjin Gu Yu Qiao Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences The School of Science and Engineering The Chinese University of Hong Kong
Large deep networks have demonstrated competitive performance in single image super-resolution (SISR), with a huge volume of data involved. However, in real-world scenarios, due to the limited accessible training pair... 详细信息
来源: 评论