咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是31-40 订阅
排序:
Tile selection method based on error minimization for photomosaic image creation
收藏 引用
Frontiers of computer Science 2021年 第3期15卷 165-172页
作者: Hongbo ZHANG Xin GAO Jixiang DU Qing LEI Lijie YANG Department of Computer Science and Technology Huaqiao UniversityXiamen 361021China Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao UniversityXiamen 361021China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao UniversityXiamen 361021China School of Computer Science and Technology Harbin Institute of TechnologyShenzhen 518055China
Photomosaic images are composite images composed of many small images called *** its overall visual effect,a photomosaic image is similar to the target image,and photomosaics are also called“montage art”.Noisy block... 详细信息
来源: 评论
DFL: cross-view cross-layer discriminative feature learning for fine-grained 3D shape classification
收藏 引用
Neural Computing and Applications 2025年 1-22页
作者: Jiang, Jinzhe Bai, Jing Ma, Xiangyu The School of Computer Science and Engineering North Minzu University Yinchuan China The Key Laboratory of Images Processing and Pattern Recognition Laboratory North Minzu University Yinchuan China
Fine-grained 3D shape classification poses challenges in effectively capturing and integrating discriminative features residing in subtle local regions. Previous methods typically extract features independently from i...
来源: 评论
Feature Decoupled of Deep Mutual Information Maximization  2
Feature Decoupled of Deep Mutual Information Maximization
收藏 引用
2nd International Conference on Automation, Robotics and computer Engineering, ICARCE 2023
作者: He, Xing Peng, Changgen Wang, Lin Tan, Weijie Wang, Zifan State Key Laboratory of Public Big Data College of Computer Science and Technology Guizhou University Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guizhou Minzu University Guiyang China Guizhou Big Data Academy Guizhou University Guiyang China Guizhou Minzu University Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guiyang China Institute of Guizhou Aerospace Measuring and Testing Technology Guiyang China
In deep learning, supervised learning techniques usually require a large amount of expensive labeled data to train the network, and the feature representations extracted by the model usually mix multiple attributes, r... 详细信息
来源: 评论
MoAFormer: Aggregating Adjacent Window Features into Local vision Transformer Using Overlapped Attention Mechanism for Volumetric Medical Segmentation  11
MoAFormer: Aggregating Adjacent Window Features into Local V...
收藏 引用
11th International Conference on Computing and pattern recognition, ICCPR 2022
作者: Luo, Yixi Yin, Huayi Du, Xia Department of Computer and Information Engineering Fujian Provincial Key Laboratory of Pattern Recognition and Image Understanding Xiamen University of Technology China
The window-based attention is used to alleviate the problem of abrupt increase in computation as the input image resolution grows and shows excellent performance. However, the problem that aggregating global features ... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention  17th
Efficient Image Super-Resolution Using Vast-Receptive-Field ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Laboratory Shanghai China The University of Sydney Sydney Australia University of Macau Zhuhai China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
FunnyNet-W: Multimodal Learning of Funny Moments in Videos in the Wild
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Zhi-Song Courant, Robin Kalogeiton, Vicky Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology Finland LIX Ecole Polytechnique IP Paris France
Automatically understanding funny moments (i.e., the moments that make people laugh) when watching comedy is challenging, as they relate to various features, such as body language, dialogues and culture. In this paper... 详细信息
来源: 评论
Foreground Prediction for Image Composition with Local and Global Feature Fusion  16
Foreground Prediction for Image Composition with Local and G...
收藏 引用
2024 16th International Conference on Graphics and Image Processing, ICGIP 2024
作者: Sun, Liliang He, Yuanlie Li, Wensheng Feng, Fujian Liang, Yihui School of Computer Guangdong University of Technology Guangzhou510000 China School of Computer Science Zhongshan Institute University of Electronic Science and Technology of China Zhongshan528400 China Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guizhou Minzu University Guiyang550025 China
This paper focuses on the image composition of transparent objects, where existing image matting methods suffer from composition errors due to the lack of accurate foreground during the composition process. We propose... 详细信息
来源: 评论
FG3DFormer: Fine-Grained 3D Shape Classification Based on vision Transformer
FG3DFormer: Fine-Grained 3D Shape Classification Based on Vi...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xiangyu Ma Jing Bai Jinzhe Jiang Bin Peng The School of Computer Science and Engineering North Minzu University The Key Laboratory of Images Processing and Pattern Recognition Laboratory Yinchuan China
Fine-grained 3D shape classification (FGSC) remains challenging due to the difficulty of adaptively capturing global structure differences and subtle inter-class distinctions. This paper directly extends vision Transf... 详细信息
来源: 评论
Multi-scale Promoted Self-adjusting Correlation Learning for Facial Action Unit Detection
收藏 引用
IEEE Transactions on Affective Computing 2024年 第2期16卷 697-711页
作者: Liu, Xin Yuan, Kaishen Niu, Xuesong Shi, Jingang Yu, Zitong Yue, Huanjing Yang, Jingyu Tianjin University School of Electrical and Information Engineering Tianjin300072 China Lappeenranta-Lahti University of Technology LUT Computer Vision and Pattern Recognition Laboratory School of Engineering Science Lappeenranta53850 Finland Beijing Institute for General Artificial Intelligence Beijing100080 China Xi'an Jiaotong University School of Software Engineering Xi'an710049 China Great Bay University Dongguan523000 China
Facial Action Unit (AU) detection is a crucial task in affective computing and social robotics as it helps to identify emotions expressed through facial expressions. Anatomically, there are innumerable correlations be... 详细信息
来源: 评论
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network  17th
UDC-UNet: Under-Display Camera Image Restoration via U-shap...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China University of Macau Zhuhai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论