咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是391-400 订阅
排序:
Geometry sharing network for 3D point cloud classification and segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Mingye Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Siat Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
In spite of the recent progresses on classifying 3D point cloud with deep CNNs, large geometric transformations like rotation and translation remain challenging problem and harm the final classification performance. T... 详细信息
来源: 评论
Cross-ethnicity face anti-spoofing recognition challenge: A review
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ajian Li, Xuan Wan, Jun Liang, Yanyan Escalera, Sergio Escalante, Hugo Jair Madadi, Meysam Jin, Yi Wu, Zhuoyuan Yu, Xiaogang Tan, Zichang Yuan, Qi Yang, Ruikun Zhou, Benjia Guo, Guodong Li, Stan Z. Faculty of Information Technology Avenida WaiLong Taipa Macau China School of Computer and Information Technology Beijing Jiaotong University Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Science Beijing China Universitat de Barcelona and Computer Vision Center Barcelona Instituto Nacional de Astrofísica Óptica y Electrónica Puebla Mexico School of Software Beihang University Beijing China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Beijing Westlake University Hangzhou China
Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has achieved impressive progress recently due the excellent performance of deep neural networks and t... 详细信息
来源: 评论
A New Effective Neural Variational Model with Mixture-of-Gaussians Prior for Text Clustering
A New Effective Neural Variational Model with Mixture-of-Gau...
收藏 引用
International Conference on Tools for Artificial Intelligence (ICTAI)
作者: Miao Li Hongyin Tang Beihong Jin Chengqing Zong State Key Laboratory of Computer Science Institute of Software Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China
Text clustering is one of the fundamental tasks in natural language processing and text data mining. It remains challenging because texts have complex internal structure besides the sparsity in the high-dimensional re...
来源: 评论
Oracle character recognition by nearest neighbor classification with deep metric learning  15
Oracle character recognition by nearest neighbor classificat...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Zhang, Yi-Kang Zhang, Heng Liu, Yong-Ge Yang, Qing Liu, Cheng-Lin National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences 95 Zhongguancun East Road Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China CAS Center for Excellence of Brain Science and Intelligence Technology Beijing China School of Computer & Information Engineering Anyang Normal University Henan China Key Laboratory of Oracle Bone Inscriptions Information Processing Ministry of Education Henan China
Oracle character is one kind of the earliest hieroglyphics, which can be dated back to Shang Dynasty in China. Oracle character recognition is important for modern archaeology, ancient text understanding, and historic... 详细信息
来源: 评论
Efficient Mode Transfer on a Compact Silicon Chip by Encircling Moving Exceptional Points
收藏 引用
Physical Review Letters 2020年 第15期124卷 153903-153903页
作者: Qingjie Liu Shuyi Li Bing Wang Shaolin Ke Chengzhi Qin Kai Wang Weiwei Liu Dingshan Gao Pierre Berini Peixiang Lu School of Physics and Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China Hubei Key Laboratory of Optical Information and Pattern Recognition Wuhan Institute of Technology Wuhan 430205 China School of Electrical Engineering and Computer Science University of Ottawa Ottawa Ontario K1N 6N5 Canada Department of Physics and Center for Research in Photonics University of Ottawa Ottawa Ontario K1N 6N5 Canada CAS Center for Excellence in Ultra-Intense Laser Science Shanghai 201800 China
Exceptional points (EPs) are branch point singularities of self-intersecting Riemann sheets, and they can be observed in a non-Hermitian system with complex eigenvalues. It has been revealed recently that dynamically ... 详细信息
来源: 评论
Sparse generalized canonical correlation analysis: Distributed alternating iteration based approach
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Jia Lv, Kexin Huo, Junyi Huang, Xiaolin Yang, Jie School of Statistics and Mathematics Guangdong University of Finance & Economics Big Data and Educational Statistics Application Laboratory 21 Chisha Road Guangzhou Guangdong510320 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China School of Electronics and Computer Science University of Southampton University Road SouthamptonSO17 1BJ United Kingdom
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist... 详细信息
来源: 评论
AIM 2020 Challenge on Image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
An End-to-End Video Text Detector with Online Tracking
An End-to-End Video Text Detector with Online Tracking
收藏 引用
International Conference on Document Analysis and recognition
作者: Hongyuan Yu Chengquan Zhang Xuan Li Junyu Han Errui Ding Liang Wang University of Chinese Academy of Sciences (UCAS) Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition (NLPR) Department of Computer Vision Technology(VIS) Baidu Inc. Chinese Academy of Sciences Artificial Intelligence Research (CAS-AIR)
Video text detection is considered as one of the most difficult tasks in document analysis due to the following two challenges: 1) the difficulties caused by video scenes, i.e., motion blur, illumination changes, and ... 详细信息
来源: 评论
Blind super-resolutionwith iterative kernel correction
arXiv
收藏 引用
arXiv 2019年
作者: Gu, Jinjin Lu, Hannan Zuo, Wangmeng Dong, Chao School of Science and Engineering Chinese University of Hong Kong Shenzhen China School of Computer Science and Technology Harbin Institute of Technology Harbin China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
Deep learning based methods have dominated superresolution (SR) field due to their remarkable performance in terms of effectiveness and efficiency. Most of these methods assume that the blur kernel during downsampling... 详细信息
来源: 评论
diffGrad: An optimization method for convolutional neural networks
arXiv
收藏 引用
arXiv 2019年
作者: Dubey, Shiv Ram Chakraborty, Soumendu Roy, Swalpa Kumar Mukherjee, Snehasis Singh, Satish Kumar Chaudhuri, Bidyut Baran The Computer Vision Group Indian Institute of Information Technology Sri City Andhra Pradesh Chittoor517646 India The Indian Institute of Information Technology Uttar Pradesh Lucknow India The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India Techno India University Sector V Salt Lake City Kolkata700091 India The Computer Vision and Biometrics Laboratory Indian Institute of Information Technology Allahabad211015 India
Stochastic Gradient Decent (SGD) is one of the core techniques behind the success of deep neural networks. The gradient provides information on the direction in which a function has the steepest rate of change. The ma... 详细信息
来源: 评论