版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
To address the computational challenges in modeling laser-produced plasma spatiotemporal evolution, this study pioneers the application of neural operators for 2D radiation hydrodynamics (RHD) simulations in fiber-laser-produced plasma systems employing liquid tin droplets for extreme ultraviolet lithography (EUVL) sources. Our novel framework enables rapid prediction of multi-physics field evolution by learning the underlying physical operators governing the complex interplay between radiation transport, hydrodynamic motion and plasma dynamics in EUV light source configurations. Through comparative analysis with convolutional long short-term memory (ConvLSTM) and convolutional neural operator (CNO) architectures, using over 50,000 spatiotemporal snapshots generated by FLASH software, the multi-variable Fourier neural operator (FNO) demonstrates superior performance in all three cases. In the case of single-laser pulse scenarios, it achieves an electron density mean squared error (MSE) of 7.49×10−5, representing a 53% improvement over ConvLSTM (1.58×10−4) and a 50% improvement over the CNO (1.51×10−4) in the normalized domain. The FNO exhibits unique zero-shot super-resolution capabilities, reconstructing high-fidelity 96×192 grid solutions from low-resolution 48×96 inputs while maintaining a normalized MSE of 10−4 relative to ground truth simulations. Demonstrating six-order-of-magnitude acceleration compared to conventional RHD solvers, this approach enables real-time analysis of plasma evolution patterns critical for EUVL source optimization, including tin droplet fragmentation dynamics and extreme ultraviolet emission characteristics. The demonstrated multi-physics modeling capability and memory-efficient super-resolution reconstruction positions FNO as a potential transformative tool for next-generation plasma diagnostics and EUVL system monitoring.
电话和邮箱必须正确填写,我们会与您联系确认。
版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
暂无评论