咨询与建议

限定检索结果

文献类型

  • 268 篇 会议
  • 201 篇 期刊文献

馆藏范围

  • 469 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 317 篇 工学
    • 184 篇 计算机科学与技术...
    • 160 篇 软件工程
    • 66 篇 信息与通信工程
    • 45 篇 光学工程
    • 44 篇 生物工程
    • 41 篇 控制科学与工程
    • 37 篇 机械工程
    • 35 篇 生物医学工程(可授...
    • 30 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 20 篇 化学工程与技术
    • 15 篇 仪器科学与技术
    • 12 篇 建筑学
    • 11 篇 土木工程
    • 10 篇 航空宇航科学与技...
    • 9 篇 力学(可授工学、理...
    • 8 篇 材料科学与工程(可...
  • 211 篇 理学
    • 111 篇 数学
    • 78 篇 物理学
    • 53 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 21 篇 系统科学
    • 17 篇 化学
  • 66 篇 管理学
    • 36 篇 管理科学与工程(可...
    • 31 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 22 篇 医学
    • 20 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 6 篇 教育学
  • 5 篇 法学
  • 5 篇 农学
  • 3 篇 军事学
  • 3 篇 艺术学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 24 篇 image segmentati...
  • 18 篇 image processing
  • 16 篇 pattern recognit...
  • 13 篇 feature extracti...
  • 11 篇 convolution
  • 11 篇 training
  • 10 篇 laboratories
  • 10 篇 semantics
  • 10 篇 artificial intel...
  • 9 篇 face recognition
  • 9 篇 image reconstruc...
  • 8 篇 computer vision
  • 8 篇 shape
  • 8 篇 intelligent cont...
  • 7 篇 image edge detec...
  • 7 篇 machine learning
  • 6 篇 object detection
  • 6 篇 support vector m...
  • 6 篇 deep learning
  • 6 篇 motion planning

机构

  • 28 篇 institute of ima...
  • 17 篇 institute for pa...
  • 16 篇 national laborat...
  • 11 篇 key laboratory o...
  • 10 篇 guizhou key labo...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 8 篇 college of infor...
  • 8 篇 institute of pat...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 8 篇 school of inform...
  • 7 篇 key laboratory o...
  • 7 篇 school of comput...
  • 7 篇 pattern recognit...
  • 7 篇 guangdong intell...
  • 6 篇 school of comput...
  • 6 篇 school of mathem...
  • 6 篇 state education ...
  • 6 篇 hubei key labora...

作者

  • 25 篇 yang jie
  • 19 篇 liu jian
  • 16 篇 huang xiaolin
  • 15 篇 jian liu
  • 14 篇 jie yang
  • 14 篇 ding mingyue
  • 14 篇 wang lin
  • 13 篇 zhang tianxu
  • 12 篇 tian jinwen
  • 11 篇 shen hong-bin
  • 10 篇 lin wang
  • 10 篇 mingyue ding
  • 9 篇 shao zehui
  • 9 篇 cai chao
  • 9 篇 yang yang
  • 9 篇 sang nong
  • 9 篇 jin-wen tian
  • 8 篇 feng fujian
  • 8 篇 jinwen tian
  • 8 篇 liang yihui

语言

  • 424 篇 英文
  • 25 篇 中文
  • 22 篇 其他
检索条件"机构=Key Laboratory of Pattern Recognition and Intelligent Control"
469 条 记 录,以下是191-200 订阅
排序:
Bayesian Saliency Detection for RGB-D Images
收藏 引用
自动化学报 2017年 第10期43卷 1810-1828页
作者: Songtao Wang Zhen Zhou Hanbing Qu Bin Li Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province Harbin University of Science and Technology Harbin 150080 China Key Laboratory of Pattern Recognition Beijing Academy of Science and Technology Beijing 100094 China
In this paper, we propose a saliency detection model for RGB-D images based on the contrasting features of color and depth within a Bayesian framework. The depth feature map is extracted based on superpixel contrast c... 详细信息
来源: 评论
CNN-based invertible wavelet scattering for the investigation of diffusion properties of the in vivo human heart in diffusion tensor imaging
arXiv
收藏 引用
arXiv 2019年
作者: Deng, Zeyu Wang, Lihui Kuai, Zixiang Chen, Qijian Cheng, Xinyu Yang, Feng Yang, Jie Zhu, Yuemin Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province College of Computer Science and Technology Guizhou University Guiyang550025 China Imaging Center Harbin Medical University Cancer Hospital Harbin150081 China School of Computer and Information Technology Beijing Jiaotong University Beijing100044 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China University Lyon INSA Lyon CNRS Inserm IRP Metislab CREATIS UMR5220 U1206 LyonF-69621 France
In vivo diffusion tensor imaging (DTI) is a promising technique to investigate noninvasively the fiber structures of the in vivo human heart. However, signal loss due to motions remains a persistent problem in in vivo... 详细信息
来源: 评论
Learning data-adaptive nonparametric kernels
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Fanghui Huang, Xiaolin Gong, Chen Yang, Jie Li, Li Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Department of Automation Tsinghua University
Kernel methods have been extensively used in a variety of machine learning tasks such as classification, clustering, and dimensionality reduction. For complicated practical tasks, the traditional kernels, e.g., Gaussi... 详细信息
来源: 评论
Segmentation-based Euler number with multi-levels for image feature description
收藏 引用
Procedia Computer Science 2017年 111卷 245-251页
作者: Qian Zhang Lin Wang Jiang-Hao Yu Minggui Zhang Academic Affairs Office Guizhou Minzu University GuiYang 550025 China Pattern Recognition & Intelligent System Key Laboratory of Gui Zhou Province GuiYang 550025 China
This paper proposes a new and efficient image feature descriptor using Euler Number with the help of segmentation according to given number of levelsest. The proposed Segmentation-based Euler Number for image descript... 详细信息
来源: 评论
ChaLearn looking at people: IsoGD and ConGD large-scale RGB-D gesture recognition
arXiv
收藏 引用
arXiv 2019年
作者: Wan, Jun Lin, Chi Wen, Longyin Li, Yunan Miao, Qiguang Escalera, Sergio Anbarjafari, Gholamreza Guyon, Isabelle Guo, Guodong Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China JD Finance Mountain ViewCA United States University of Southern California Los AngelesCA90089-0911 United States School of Computer Science and Technology Xidian University & Xi'an Key Laboratory of Big Data and Intelligent Vision 2nd South Taibai Road Xi'an710071 China Universitat de Barcelona Computer Vision Center Spain iCV Lab Institute of Technology University of Tartu Estonia Faculty of Engineering Hasan Kalyoncu University Gaziantep Turkey Institute of Digital Technologies Loughborough University London United Kingdom ChaLearn United States University Paris-Saclay France institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application China
The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on pattern recognition (ICPR) 2016 and International Conference on Computer V... 详细信息
来源: 评论
Progressive Refinement Bilateral Filter
Progressive Refinement Bilateral Filter
收藏 引用
IEEE International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)
作者: Chanyi Lu Yong Zhao Lin Wang Guiying Zhang Fujian Feng Li Zhang College of Data Science and Information Engineering Guizhou Minzu University Guiyang China School of Electronic and Computer Engineering Shenzhen Graduate School of Peking University Shenzhen China Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guizhou Minzu University Guiyang China Department of Medical Information Engineering Zunyi Medical University Zunyi China
In this paper, a coarse-to-fine framework for image noise removal is proposed. The bilateral filter is redefined by the manner of progressive refining to effectively eliminate noise, thus forming progressive refinemen... 详细信息
来源: 评论
Fast signal recovery from saturated measurements by linear loss and nonconvex penalties
arXiv
收藏 引用
arXiv 2018年
作者: He, Fan Huang, Xiaolin Liu, Yipeng Yan, Ming Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University The MOE Key Laboratory of System Control and Information Processing Shanghai200240 China School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu611731 China The Department of Computational Mathematics Science and Engineering Michigan State University MI United States
Sign information is the key to overcoming the inevitable saturation error in compressive sensing systems, which causes information loss and results in bias. For sparse signal recovery from saturation, we propose to us... 详细信息
来源: 评论
<i>L</i>(2,1)-Labeling of the Brick Product Graphs
收藏 引用
Journal of Applied Mathematics and Physics 2017年 第8期5卷 1529-1536页
作者: Xiujun Zhang Hong Yang Hong Li School of Information Science and Engineering Chengdu University Chengdu China Key Laboratory of Pattern Recognition and Intelligent Information Processing Institutions of Higher Education of Sichuan Province Chengdu University Chengdu China
A k-L(2,1)-labeling for a graph G is a function such that whenever and whenever u and v are at distance two apart. The λ-number for G, denoted by λ(G), is the minimum k over all k-L(2,1)-labelings of G. In this pape... 详细信息
来源: 评论
A localization method avoiding flip ambiguities for micro-UAVs with bounded distance measurement errors
arXiv
收藏 引用
arXiv 2018年
作者: Guo, Qingbei Zhang, Yuan Lloret, Jaime Kantarci, Burak Seah, Winston K.G. Shandong Provincial Key Laboratory of Network Based Intelligent Computing University of Jinan Jinan Shandong China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Integrated Management Coastal Research Institute Universidad Politecnica de Valencia Spain School of Electrical Engineering and Computer Science University of Ottawa Canada School of Engineering and Computer Science Victoria University of Wellington New Zealand
Localization is a fundamental function in cooperative control of micro unmanned aerial vehicles (UAVs), but is easily affected by flip ambiguities because of measurement errors and flying motions. This study proposes ... 详细信息
来源: 评论
DNA Sequence Alignment Algorithm Based on k-tuple Statistics
DNA Sequence Alignment Algorithm Based on k-tuple Statistics
收藏 引用
2017 2nd International Conference on Software, Multimedia and Communication Engineering(SMCE 2017)
作者: Jun-yan ZHANG Chen-hui YANG Hai-ying WANG College of Information Science and Engineering Chengdu UniversityChengdu 610106China Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan Chengdu University
DNA Sequence Alignment is one of the most basic and most important operations in *** this paper,we put forward to SDk S algorithm based on k-tuple statistic,which is a kind of probability *** positive transition proba... 详细信息
来源: 评论