咨询与建议

限定检索结果

文献类型

  • 268 篇 会议
  • 204 篇 期刊文献

馆藏范围

  • 472 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 188 篇 计算机科学与技术...
    • 162 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 光学工程
    • 44 篇 生物工程
    • 42 篇 控制科学与工程
    • 36 篇 机械工程
    • 35 篇 生物医学工程(可授...
    • 29 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 20 篇 化学工程与技术
    • 13 篇 仪器科学与技术
    • 12 篇 建筑学
    • 11 篇 土木工程
    • 10 篇 航空宇航科学与技...
    • 9 篇 力学(可授工学、理...
    • 8 篇 材料科学与工程(可...
  • 210 篇 理学
    • 113 篇 数学
    • 77 篇 物理学
    • 53 篇 生物学
    • 41 篇 统计学(可授理学、...
    • 20 篇 系统科学
    • 17 篇 化学
  • 66 篇 管理学
    • 36 篇 管理科学与工程(可...
    • 31 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 22 篇 医学
    • 20 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 5 篇 法学
  • 5 篇 教育学
  • 5 篇 农学
  • 3 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 24 篇 image segmentati...
  • 18 篇 image processing
  • 16 篇 pattern recognit...
  • 14 篇 feature extracti...
  • 12 篇 training
  • 11 篇 convolution
  • 10 篇 laboratories
  • 10 篇 semantics
  • 10 篇 artificial intel...
  • 10 篇 image reconstruc...
  • 9 篇 face recognition
  • 8 篇 computer vision
  • 8 篇 shape
  • 8 篇 intelligent cont...
  • 7 篇 image edge detec...
  • 7 篇 machine learning
  • 6 篇 object detection
  • 6 篇 support vector m...
  • 6 篇 deep learning
  • 6 篇 motion planning

机构

  • 28 篇 institute of ima...
  • 16 篇 national laborat...
  • 15 篇 institute for pa...
  • 11 篇 guizhou key labo...
  • 11 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 institute of pat...
  • 8 篇 college of infor...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 school of comput...
  • 7 篇 school of inform...
  • 7 篇 school of comput...
  • 7 篇 pattern recognit...
  • 7 篇 guangdong intell...
  • 6 篇 school of comput...
  • 6 篇 school of mathem...
  • 6 篇 state education ...

作者

  • 25 篇 yang jie
  • 18 篇 liu jian
  • 16 篇 huang xiaolin
  • 15 篇 jian liu
  • 14 篇 jie yang
  • 14 篇 ding mingyue
  • 14 篇 wang lin
  • 13 篇 zhang tianxu
  • 13 篇 tian jinwen
  • 11 篇 shen hong-bin
  • 11 篇 lin wang
  • 10 篇 mingyue ding
  • 9 篇 shao zehui
  • 9 篇 cai chao
  • 9 篇 yang yang
  • 9 篇 jin-wen tian
  • 8 篇 feng fujian
  • 8 篇 jinwen tian
  • 8 篇 liang yihui
  • 8 篇 peixiang lu

语言

  • 437 篇 英文
  • 22 篇 中文
  • 15 篇 其他
检索条件"机构=Key Laboratory of Pattern Recognition and Intelligent Control"
472 条 记 录,以下是61-70 订阅
排序:
NLFA: A Non Local Fusion Alignment Module for Multi-Scale Feature in Object Detection  3rd
NLFA: A Non Local Fusion Alignment Module for Multi-Scale Fe...
收藏 引用
3rd International Symposium on Automation, Mechanical and Design Engineering, SAMDE 2022
作者: Xue, Honghui Ma, Jinshan Cai, Zheyi Fu, Junfang Guo, Feng Weng, Wei Dong, Yunxin Zhang, Zhenchang College of Computer and Information Sciences Fujian Agriculture and Forestry University Fuzhou China Fujian Zhongke Zhongxin Intelligent Technology Co. Ltd Fuzhou China Fujian Newland Auto-ID Tech. Co. Ltd Fuzhou China Department of Computer and Information Engineering Xiamen University of Technology Xiamen China Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen China
Recently, in order to pursue better detection results, more convolutional layers and deeper networks are a direction pursued by everyone. However, more and more down-sampling convolution or up-sampling operations gene... 详细信息
来源: 评论
First-Principles Study of the Heavy Metals Adsorption on Sns2 And Janus Monolayers
SSRN
收藏 引用
SSRN 2025年
作者: Zhu, Xiaoyu Liu, Chi Shen, Tao Liu, Xin Sun, Feifei Feng, Yue Heilongjiang Provincial Key Laboratory of Pattern Recognition and Information Perception Harbin University of Science and Technology Harbin150080 China Heilongjiang Provincial Key Laboratory of Quantum Manipulation &Control Harbin University of Science and Technology Harbin150080 China College of Science and Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application Harbin University of Science and Technology Harbin150080 China
Heavy metal contamination in water bodies caused serious threats to health and ecosystems, necessitating adsorbing materials for rapid decrease in heavy metals. Therefore, we have carried out a first-principles study ... 详细信息
来源: 评论
Local Neighbor Propagation on Graphs for Robust Feature Matching
SSRN
收藏 引用
SSRN 2023年
作者: Guo, Hanlin Xiao, Guobao Su, Lumei Zhou, Jiaxing Wang, Dahan Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control School of Electrical Engineering and Automation Xiamen University of Technology China Fujian Key Laboratory of Sensing and Computing for Smart Cities School of Information Science and Engineering Xiamen University China College of Computer and Control Engineering Minjiang University China Fujian Key Laboratory of Pattern Recognition and Image Understanding School of Computer and Information Engineering Xiamen University of Technology China
Establishing reliable correspondences between two sets of feature points is a critical preprocessing step in many computer vision and pattern recognition tasks. In this paper, we propose a novel robust Local Neighbor ... 详细信息
来源: 评论
Adaptive Pixel Pair Generation Strategy for Image Matting Methods Based on Pixel Pair Optimization  19th
Adaptive Pixel Pair Generation Strategy for Image Matting Me...
收藏 引用
19th Chinese Conference on Image and Graphics Technologies and Applications, IGTA 2024
作者: Zheng, Jiamin Wen, Wen Liang, Yihui Feng, Fujian Xu, Xiang School of Computer Guangdong University of Technology Guangzhou510000 China School of Computer Science Zhongshan Institute University of Electronic Science and Technology of China Zhongshan528400 China Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guizhou Minzu University Guiyang550025 China
Natural image matting plays a crucial role in numerous real-world applications. Image matting methods based on pixel pair optimization is a type of matting algorithm, which has significant advantages in parallel compu... 详细信息
来源: 评论
Fire Detection Based on Flame Enhancement for Weak Fires  19th
Fire Detection Based on Flame Enhancement for Weak Fires
收藏 引用
19th Chinese Conference on Image and Graphics Technologies and Applications, IGTA 2024
作者: Chen, Kuan Wen, Wen Feng, Fujian Xu, Xiang Liang, Yihui School of Computer Guangdong University of Technology Guangzhou510000 China School of Computer Science Zhongshan Institute University of Electronic Science and Technology of China Zhongshan528400 China Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guizhou Minzu University Guiyang550025 China
Detecting weak fire, such as overexposed and highly transparent flames, remains a significant challenge in vision-based fire detection. Convolutional Neural Network (CNN) based methods are widely used for automatic fi... 详细信息
来源: 评论
Biologically inspired visual computing:the state of the art
收藏 引用
Frontiers of Computer Science 2021年 第1期15卷 1-15页
作者: Wangli HAO Ian Max ANDOLINA Wei WANG Zhaoxiang ZHANG Research Center for Research on Intelligent Perception and Computing Beijing 100190China National Laboratory of Pattern Recognition CASIABeijing 100190China CAS Center for Excellence in Brain Science and Intelligence Technology CASBeijing 100190China University of Chinese Academy of Sciences Beijing 100190China State Key Laboratory of Neuroscience Shanghai 200031China Institute of Neuroscience Chinese Academy of SciencesShanghai 200031China
Visual information is highly advantageous for the evolutionary success of almost all *** information is likewise critical for many computing tasks,and visual computing has achieved tremendous successes in numerous app... 详细信息
来源: 评论
Autonomous Obstacle Avoidance Scheme Using Monocular Vision Applied to Mobile Robots
Autonomous Obstacle Avoidance Scheme Using Monocular Vision ...
收藏 引用
2020 International Conference on intelligent control, Measurement and Signal Processing and intelligent Oil Field, ICMSP 2020
作者: Song, Yun Yun Yang, Sheng Yi Liu, Chao Wu, Qing Gui School of Data Science and Information Engineering Key Laboratory of Pattern Recognition and Intelligent Systems of Guizhou Province Guizhou Minzu University Guiyang China School of Mechatronics Engineering Guizhou Minzu University Guiyang China
Mobile robots cannot move in an unknown environment with static or slow-moving obstacles effectively. We present an enhanced obstacle avoidance strategy using monocular vision to solve this problem. First, we combine ... 详细信息
来源: 评论
Mixture Loss Function-based Classification Network for Few-shot Learning
Mixture Loss Function-based Classification Network for Few-s...
收藏 引用
Computing, Robotics and System Sciences (ICRSS), International Conference on
作者: Yansha Zhang Feng Pan Jie Wang Lin Wang College of Date Science and Information Engineering GuiZhou Minzu University Guiyang China Key Laboratory of Pattern Recognition and Intelligent System of Guizhou Province Guiyang China
Data augmentation technology can effectively solve the problem of few-shot image classification, but many approaches based on data augmentation generated sample have poor discriminability, which negatively affects the... 详细信息
来源: 评论
Improved RRT algorithm path planning combined with artificial potential field algorithm  11
Improved RRT algorithm path planning combined with artificia...
收藏 引用
2021 11th International Workshop on Computer Science and Engineering, WCSE 2021
作者: Wang, Xiufen Yang, Shengyi School of Mechanical Electronic Engineering Guizhou Minzu University Guizhou Guiyang550025 China Key Laboratory of Pattern Recognition and Intelligent Systems of Guizhou Province Guizhou Minzu University Guizhou Guiyang550025 China
In order to solve the problem of low path planning efficiency in complex obstacle environment, an improved Rapidly-exploring Random Trees (RRT) algorithm is proposed. It utilizes artificial potential field to guide th... 详细信息
来源: 评论
Semantic Transformation-Based Data Augmentation for Few-Shot Learning
SSRN
收藏 引用
SSRN 2023年
作者: Pan, Mei-Hong Xin, Hong-Yi Shen, Hong-Bin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Jiaotong University Shanghai200240 China
Few-shot learning (FSL) as a data-scarce method, aims to recognize instances of unseen classes solely based on very few examples. However, the model can easily become overfitted due to the biased distribution formed w... 详细信息
来源: 评论