咨询与建议

限定检索结果

文献类型

  • 268 篇 会议
  • 204 篇 期刊文献

馆藏范围

  • 472 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 188 篇 计算机科学与技术...
    • 162 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 光学工程
    • 44 篇 生物工程
    • 42 篇 控制科学与工程
    • 36 篇 机械工程
    • 35 篇 生物医学工程(可授...
    • 29 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 20 篇 化学工程与技术
    • 13 篇 仪器科学与技术
    • 12 篇 建筑学
    • 11 篇 土木工程
    • 10 篇 航空宇航科学与技...
    • 9 篇 力学(可授工学、理...
    • 8 篇 材料科学与工程(可...
  • 210 篇 理学
    • 113 篇 数学
    • 77 篇 物理学
    • 53 篇 生物学
    • 41 篇 统计学(可授理学、...
    • 20 篇 系统科学
    • 17 篇 化学
  • 66 篇 管理学
    • 36 篇 管理科学与工程(可...
    • 31 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 22 篇 医学
    • 20 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 5 篇 法学
  • 5 篇 教育学
  • 5 篇 农学
  • 3 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 24 篇 image segmentati...
  • 18 篇 image processing
  • 16 篇 pattern recognit...
  • 14 篇 feature extracti...
  • 12 篇 training
  • 11 篇 convolution
  • 10 篇 laboratories
  • 10 篇 semantics
  • 10 篇 artificial intel...
  • 10 篇 image reconstruc...
  • 9 篇 face recognition
  • 8 篇 computer vision
  • 8 篇 shape
  • 8 篇 intelligent cont...
  • 7 篇 image edge detec...
  • 7 篇 machine learning
  • 6 篇 object detection
  • 6 篇 support vector m...
  • 6 篇 deep learning
  • 6 篇 motion planning

机构

  • 28 篇 institute of ima...
  • 16 篇 national laborat...
  • 15 篇 institute for pa...
  • 11 篇 guizhou key labo...
  • 11 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 institute of pat...
  • 8 篇 college of infor...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 school of comput...
  • 7 篇 school of inform...
  • 7 篇 school of comput...
  • 7 篇 pattern recognit...
  • 7 篇 guangdong intell...
  • 6 篇 school of comput...
  • 6 篇 school of mathem...
  • 6 篇 state education ...

作者

  • 25 篇 yang jie
  • 18 篇 liu jian
  • 16 篇 huang xiaolin
  • 15 篇 jian liu
  • 14 篇 jie yang
  • 14 篇 ding mingyue
  • 14 篇 wang lin
  • 13 篇 zhang tianxu
  • 13 篇 tian jinwen
  • 11 篇 shen hong-bin
  • 11 篇 lin wang
  • 10 篇 mingyue ding
  • 9 篇 shao zehui
  • 9 篇 cai chao
  • 9 篇 yang yang
  • 9 篇 jin-wen tian
  • 8 篇 feng fujian
  • 8 篇 jinwen tian
  • 8 篇 liang yihui
  • 8 篇 peixiang lu

语言

  • 437 篇 英文
  • 22 篇 中文
  • 15 篇 其他
检索条件"机构=Key Laboratory of Pattern Recognition and Intelligent Control"
472 条 记 录,以下是81-90 订阅
排序:
Translatotron-V(ison): An End-to-End Model for In-Image Machine Translation
arXiv
收藏 引用
arXiv 2024年
作者: Lan, Zhibin Niu, Liqiang Meng, Fandong Zhou, Jie Zhang, Min Su, Jinsong School of Informatics Xiamen University China Pattern Recognition Center WeChat AI Tencent Inc China Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage of Fujian and Taiwan Xiamen University Ministry of Culture and Tourism China Institute of Computer Science and Technology Soochow University China
In-image machine translation (IIMT) aims to translate an image containing texts in source language into an image containing translations in target language. In this regard, conventional cascaded methods suffer from is... 详细信息
来源: 评论
Hybrid Data-Free Knowledge Distillation
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Jialiang Chen, Shuo Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Jiangsu Key Laboratory of Image and Video Understanding for Social Security China Center for Advanced Intelligence Project RIKEN Japan Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Data-free knowledge distillation aims to learn a compact student network from a pre-trained large teacher network without using the original training data of the teacher network. Existing collection-based and generati... 详细信息
来源: 评论
Cross-Modal De-Deviation for Enhancing Few-Shot Classification
SSRN
收藏 引用
SSRN 2023年
作者: Pan, Mei-Hong Shen, Hong-Bin School of Electronic Information and Electrical Engineering Shanghai Jiaotong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China
Few-shot learning poses a critical challenge due to the deviation problem caused by the scarcity of available samples. In this work, we aim to address deviations in both feature representations and prototypes. To achi... 详细信息
来源: 评论
A Semantic Segmentation Method of Buildings in Remote Sensing Image Based on Improved UNet  2
A Semantic Segmentation Method of Buildings in Remote Sensin...
收藏 引用
2nd International Conference on Signal Image Processing and Communication, ICSIPC 2022
作者: Li, Zhongyu Liu, Yang Kuang, Yin Wang, Huajun Liu, Cheng College of Computer Science Chengdu Normal University Chengdu611130 China College of Geophysics Chengdu University of Technology Chengdu610059 China Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan Chengdu University Chengdu610106 China Artificial Intelligence Key Laboratory of Sichuan Province Zigong643000 China Key Laboratory of interior Layout optimization and Security Institutions of Higher Education of Sichuan Province Chengdu Normal University Sichuan Chengdu611130 China College of Movie and Media Sichuan Normal University Chengdu610066 China
Aiming at the problem of model instability and overfitting of deep neural networks with the deepening of the number of network layers, the current mainstream method is to use batch normalization (BN) to alleviate them... 详细信息
来源: 评论
Unifying Gradients to Improve Real-World Robustness for Deep Networks
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Yingwen Chen, Sizhe Fang, Kun Huang, Xiaolin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University 800 Dongchuan Road Shanghai China Institute of Image Processing and Pattern Recognition The MOE Key Laboratory of System Control and Information Processing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai China
The wide application of deep neural networks (DNNs) demands an increasing amount of attention to their real-world robustness, i.e., whether a DNN resists black-box adversarial attacks, among which score-based query at... 详细信息
来源: 评论
Geometric Numerical Integral Method in Compact Lie Group
Geometric Numerical Integral Method in Compact Lie Group
收藏 引用
6th International Conference on intelligent Computing and Signal Processing (ICSP)
作者: Chao Liu Shengyi Yang Key Laboratory of Pattern Recognition and Intelligent System of Guizhou Province Guizhou Minzu University Gui Yang China
Three dimensions special orthogonal group SO (3) is widely used to describe the rotation kinematics of the rigid body without local coordinates, which can avoid rotation singularity and unwinding in traditional method... 详细信息
来源: 评论
Sn-Cd Modified Ti 2Co 2 MXene for Enhanced Harmful Gas Adsorption: A DFT Study
SSRN
收藏 引用
SSRN 2024年
作者: Yu, Wenzhuo Shen, Tao Yuan, Hang Feng, Yue Wu, Haodong Liu, Xin Liu, Chi Heilongjiang Provincial Key Laboratory of Pattern Recognition and Information Perception Harbin University of Science and Technology Harbin150080 China Heilongjiang Provincial Key Laboratory of Quantum Manipulation and Control Harbin University of Science and Technology Harbin150080 China Key Laboratory of Engineering Dielectrics and its Application Ministry of Education Harbin University of Science and Technology Harbin150080 China College of Science Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application Harbin University of Science and Technology Harbin150080 China
In this study, we have investigated the adsorption characteristics of Ti2CO2 monolayer based on density functional theory for the harmful gases (NH3, H2S, CH4, NO2, SO2). The optimum adsorption structure of Ti2CO2 mon... 详细信息
来源: 评论
Isoform Function Prediction Based on Heterogeneous Graph Attention Networks
Isoform Function Prediction Based on Heterogeneous Graph Att...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Kuo Guo Yifan Li Hao Chen Hong-Bin Shen Yang Yang Department of Computer Science and Engineering Shanghai Jiao Tong University and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Computational Biology Department School of Computer Science Carnegie Mellon University Pittsburgh PA USA
Isoforms refer to different mRNA molecules transcribed from the same gene, which can be translated into proteins with varying structures and functions. Predicting the functions of isoforms is an essential topic in bio...
来源: 评论
Online Discriminative Semantic-Preserving Hashing for Large-Scale Cross-Modal Retrieval  18th
Online Discriminative Semantic-Preserving Hashing for Large-...
收藏 引用
18th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2021
作者: Yi, Jinhan He, Yi Liu, Xin Department of Computer Science and Technology Huaqiao University Xiamen361021 China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Nanjing University of Science and Technology Nanjing210094 China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Xiamen China Fujian Key Laboratory of Big Data Intelligence and Security Xiamen China
Cross-modal hashing has drawn increasing attentions for efficient retrieval across different modalities, and existing methods primarily learn the hash functions in a batch based mode, i.e., offline methods. Neverthele... 详细信息
来源: 评论
Provable Discriminative Hyperspherical Embedding for Out-of-Distribution Detection  39
Provable Discriminative Hyperspherical Embedding for Out-of-...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Zou, Zhipeng Wan, Sheng Li, Guangyu Han, Bo Liu, Tongliang Zhao, Lin Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Jiangsu Key Laboratory of Image and Video Understanding for Social Security China Hong Kong Baptist University China Sydney AI Centre The University of Sydney Sydney Australia Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Out-of-distribution (OOD) detection aims to identify the test examples that do not belong to the distribution of training data. The distance-based methods, which identify OOD examples based on their distances from the... 详细信息
来源: 评论