咨询与建议

限定检索结果

文献类型

  • 326 篇 会议
  • 212 篇 期刊文献

馆藏范围

  • 538 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 370 篇 工学
    • 231 篇 计算机科学与技术...
    • 203 篇 软件工程
    • 97 篇 信息与通信工程
    • 67 篇 光学工程
    • 48 篇 生物工程
    • 44 篇 电子科学与技术(可...
    • 44 篇 控制科学与工程
    • 36 篇 机械工程
    • 35 篇 生物医学工程(可授...
    • 30 篇 电气工程
    • 22 篇 化学工程与技术
    • 17 篇 航空宇航科学与技...
    • 15 篇 仪器科学与技术
    • 13 篇 土木工程
    • 11 篇 建筑学
    • 11 篇 交通运输工程
    • 8 篇 材料科学与工程(可...
  • 244 篇 理学
    • 126 篇 数学
    • 93 篇 物理学
    • 57 篇 生物学
    • 42 篇 统计学(可授理学、...
    • 20 篇 化学
    • 16 篇 系统科学
  • 77 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 35 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 23 篇 医学
    • 20 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 8 篇 法学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 5 篇 农学
  • 4 篇 教育学
  • 4 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 25 篇 image segmentati...
  • 18 篇 feature extracti...
  • 17 篇 image processing
  • 16 篇 pattern recognit...
  • 13 篇 object detection
  • 13 篇 convolution
  • 11 篇 image reconstruc...
  • 10 篇 laboratories
  • 10 篇 semantics
  • 10 篇 shape
  • 10 篇 training
  • 9 篇 face recognition
  • 9 篇 algorithm design...
  • 9 篇 artificial intel...
  • 9 篇 infrared imaging
  • 8 篇 image enhancemen...
  • 8 篇 target tracking
  • 8 篇 image edge detec...
  • 8 篇 image analysis
  • 8 篇 computer vision

机构

  • 27 篇 institute of ima...
  • 21 篇 school of inform...
  • 18 篇 state key labora...
  • 17 篇 key laboratory o...
  • 17 篇 anhui province k...
  • 13 篇 school of softwa...
  • 12 篇 institute for pa...
  • 11 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 9 篇 national key lab...
  • 9 篇 pattern recognit...
  • 9 篇 institute of ima...
  • 9 篇 state key labora...
  • 8 篇 key laboratory o...
  • 8 篇 college of infor...
  • 8 篇 institute of pat...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 8 篇 hubei key labora...
  • 8 篇 university of ch...

作者

  • 27 篇 zhang tianxu
  • 24 篇 yang jie
  • 16 篇 huang xiaolin
  • 15 篇 tian jinwen
  • 14 篇 jie yang
  • 14 篇 liu jian
  • 13 篇 zhou jie
  • 13 篇 jinwen tian
  • 13 篇 jian liu
  • 12 篇 ding mingyue
  • 12 篇 li qishen
  • 11 篇 tianxu zhang
  • 11 篇 shen hong-bin
  • 10 篇 cai chao
  • 10 篇 qishen li
  • 9 篇 shao zehui
  • 9 篇 yang yang
  • 9 篇 huang zhixiang
  • 9 篇 meng fandong
  • 8 篇 fang tao

语言

  • 512 篇 英文
  • 20 篇 中文
  • 6 篇 其他
检索条件"机构=Key Laboratory of Pattern Recognition and Intelligent Information Processing"
538 条 记 录,以下是211-220 订阅
排序:
EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks
Research Square
收藏 引用
Research Square 2021年
作者: Meng, Lubin Huang, Jian Zeng, Zhigang Jiang, Xue Yu, Shan Jung, Tzyy-Ping Lin, Chin-Teng Chavarriaga, Ricardo Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Brainnetome Center and National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China La Jolla CA United States Center for Advanced Neurological Engineering Institute of Engineering in Medicine UCSD La Jolla CA United States Centre of Artificial Intelligence Faculty of Engineering and Information Technology University of Technology Sydney Australia ZHAW DataLab Zürich University of Applied Sciences Winterthur8401 Switzerland
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to the wide adoption of sophisticated machine learning approaches for decoding the EEG si... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
The devil is in the channels: Mutual-channel loss for fine-grained image classification
arXiv
收藏 引用
arXiv 2020年
作者: Chang, Dongliang Ding, Yifeng Xie, Jiyang Bhunia, Ayan Kumar Li, Xiaoxu Ma, Zhanyu Wu, Ming Guo, Jun Song, Yi-Zhe Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Centre for Vision Speech and Signal Processing University of Surrey London United Kingdom
The key to solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great strides have been made, with complex networks designed specifically to lear... 详细信息
来源: 评论
One-shot distributed algorithm for generalized eigenvalue problem
arXiv
收藏 引用
arXiv 2020年
作者: Lyu, Kexin He, Fan Huang, Xiaolin Yang, Jie Chen, Liming Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China Institute of Medical Robotics Shanghai Jiao Tong University 800 Dongchuan Road Shanghai200240 China Ecole Centrale de Lyon France
Nowadays, more and more datasets are stored in a distributed way for the sake of memory storage or data privacy. The generalized eigenvalue problem (GEP) plays a vital role in a large family of high-dimensional statis... 详细信息
来源: 评论
Ballot character recognition based on image processing
收藏 引用
Journal of Physics: Conference Series 2021年 第1期2024卷
作者: Yu-qing Zhao Xiao-bo Yan Lin Wang College of Date Science and Information Engineering Guizhou Minzu University Guiyang Guizhou 550025 China Key Laboratory of Pattern Recognition and Intelligent Systems of Guizhou Guiyang Guizhou 550025 China
According to the relevant provisions of the "Election Law of the People's Republic of China", the engineering software required for the implementation of large-scale conference elections can set voting r...
来源: 评论
Self-grouping convolutional neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Guo, Qingbei Wu, Xiao-Jun Kittler, Josef Feng, Zhiquan Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Shandong Provincial Key Laboratory of Network based Intelligent Computing University of Jinan Jinan250022 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Although group convolution operators are increasingly used in deep convolutional neural networks to improve the computational efficiency and to reduce the number of parameters, most existing methods construct their gr... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
DAmageNet: A universal adversarial dataset
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Sizhe Huang, Xiaolin He, Zhengbao Sun, Chengjin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China
It is now well known that deep neural networks (DNNs) are vulnerable to adversarial attack. Adversarial samples are similar to the clean ones, but are able to cheat the attacked DNN to produce incorrect predictions in... 详细信息
来源: 评论
Duality-Gated Mutual Condition Network for RGBT Tracking
arXiv
收藏 引用
arXiv 2020年
作者: Lu, Andong Qian, Cun Li, Chenglong Tang, Jin Wang, Liang Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Artificial Intelligence Anhui University Hefei230601 China The National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China
Low-quality modalities contain not only a lot of noisy information but also some discriminative features in RGBT tracking. However, the potentials of low-quality modalities are not well explored in existing RGBT track... 详细信息
来源: 评论
A Cellular Ant Colony Algorithm for Path Planning Using Bayesian Posterior Probability
A Cellular Ant Colony Algorithm for Path Planning Using Baye...
收藏 引用
2019 2nd International Conference on Informatics, Control and Automation (ICA 2019)
作者: Xiu-fen WANG Sheng-yi YANG School of data science and Information Engineering Guizhou Minzu University Key Laboratory of Pattern Recognition and Intelligent Systems of Guizhou Province Guizhou Minzu University
In order to solve the problem of slow convergence rate in traditional ant colony algorithm for UAV path planning,a new cellular ant colony algorithm is ***,we construct a sector prediction area in grid environment ***... 详细信息
来源: 评论