咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 258 篇 期刊文献

馆藏范围

  • 557 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 369 篇 工学
    • 234 篇 计算机科学与技术...
    • 200 篇 软件工程
    • 83 篇 信息与通信工程
    • 60 篇 生物工程
    • 51 篇 控制科学与工程
    • 44 篇 机械工程
    • 43 篇 光学工程
    • 33 篇 生物医学工程(可授...
    • 26 篇 化学工程与技术
    • 25 篇 电气工程
    • 22 篇 电子科学与技术(可...
    • 12 篇 仪器科学与技术
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 7 篇 安全科学与工程
    • 6 篇 力学(可授工学、理...
  • 233 篇 理学
    • 115 篇 数学
    • 77 篇 物理学
    • 68 篇 生物学
    • 44 篇 统计学(可授理学、...
    • 25 篇 系统科学
    • 22 篇 化学
  • 93 篇 管理学
    • 51 篇 管理科学与工程(可...
    • 46 篇 图书情报与档案管...
    • 12 篇 工商管理
  • 21 篇 医学
    • 20 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 8 篇 法学
    • 6 篇 社会学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 6 篇 教育学
  • 6 篇 农学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 27 篇 feature extracti...
  • 25 篇 pattern recognit...
  • 20 篇 semantics
  • 20 篇 training
  • 19 篇 image segmentati...
  • 18 篇 face recognition
  • 15 篇 image processing
  • 14 篇 speech recogniti...
  • 12 篇 laboratories
  • 11 篇 convolution
  • 10 篇 deep neural netw...
  • 10 篇 machine learning
  • 10 篇 computer vision
  • 10 篇 robustness
  • 9 篇 support vector m...
  • 9 篇 deep learning
  • 9 篇 image reconstruc...
  • 8 篇 data mining
  • 8 篇 shape
  • 8 篇 character recogn...

机构

  • 72 篇 pattern recognit...
  • 27 篇 institute of ima...
  • 20 篇 pattern recognit...
  • 16 篇 the pattern reco...
  • 11 篇 national laborat...
  • 11 篇 key laboratory o...
  • 10 篇 guizhou key labo...
  • 10 篇 university of ch...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 institute for pa...
  • 9 篇 school of comput...
  • 8 篇 college of infor...
  • 8 篇 institute of pat...
  • 8 篇 pattern recognit...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 school of comput...
  • 7 篇 school of inform...

作者

  • 35 篇 guo jun
  • 31 篇 ma zhanyu
  • 30 篇 jun guo
  • 25 篇 yang jie
  • 20 篇 deng weihong
  • 19 篇 gang liu
  • 16 篇 huang xiaolin
  • 14 篇 jie yang
  • 13 篇 liu jian
  • 13 篇 honggang zhang
  • 12 篇 liu gang
  • 11 篇 shen hong-bin
  • 11 篇 wang lin
  • 10 篇 chang dongliang
  • 10 篇 jian liu
  • 10 篇 lin wang
  • 10 篇 song yi-zhe
  • 9 篇 shao zehui
  • 9 篇 yang yang
  • 9 篇 tian jinwen

语言

  • 530 篇 英文
  • 23 篇 中文
  • 6 篇 其他
检索条件"机构=Key Laboratory of Pattern Recognition and Intelligent System"
557 条 记 录,以下是201-210 订阅
排序:
Small target detection using an optimization-based filter  40
Small target detection using an optimization-based filter
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Xie, Kai Fu, Keren Zhou, Tao Yang, Jie Wu, Qiang He, Xiangjian Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China School of Computing and Communications University of Technology Sydney Australia
Small target detection is a critical problem in the Infrared Search And Track (IRST) system. Although it has been studied for years, there are some challenges remained, e.g. cloud edges and horizontal lines are likely... 详细信息
来源: 评论
Object tracking within the framework of concept drift
Object tracking within the framework of concept drift
收藏 引用
11th Asian Conference on Computer Vision, ACCV 2012
作者: Chen, Li Zhou, Yue Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai 200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai Jiao Tong University Shanghai 200240 China
It is well known that the backgrounds or the targets always change in real scenes, which weakens the effectiveness of classical tracking algorithms because of frequent model mismatches. In this paper, an object tracki... 详细信息
来源: 评论
Pathology study for blood vessel of ocular fundus images by photoacoustic tomography
Pathology study for blood vessel of ocular fundus images by ...
收藏 引用
IEEE Symposium (IUS) Ultrasonics
作者: Jiayao Zhang Kai Deng Bin Chen Hengrong Lan Meng Zhou Fei Gao The Hybrid Imaging System Laboratory ShanghaiTech University Shanghai China The Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
In the entire diabetic population, the total number of patients with diabetic retinopathy is more than 50%, and the longer diabetes, the higher the incidence of retinopathy and the rate of blindness. Besides, the bloo... 详细信息
来源: 评论
Challenging the recognition of facial expression via deep learning
Challenging the recognition of facial expression via deep le...
收藏 引用
作者: Hu, De Kun Liu, Yong Hong Zhang, Li Duan, Gui Duo Key Laboratory of Pattern Recognition and Intelligent Information Processing Institutions of Higher Education of Sichuan Province Chengdu University Chengdu 610106 China School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 China
A deep Neural Network model was trained to classify the facial expression in unconstrained images, which comprises nine layers, including input layer, convolutional layer, pooling layer, fully connected layers and out... 详细信息
来源: 评论
Channel DropBlock: An improved regularization method for fine-grained visual classification
arXiv
收藏 引用
arXiv 2021年
作者: Ding, Yifeng Dong, Shuwei Tong, Yujun Ma, Zhanyu Xiao, Bo Ling, Haibin Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Department of Computer Science Stony Brook University
Classifying the sub-categories of an object from the same super-category (e.g., bird) in a fine-grained visual classification (FGVC) task highly relies on mining multiple discriminative features. Existing approaches m... 详细信息
来源: 评论
Modeling discriminative representations for out-of-domain detection with supervised contrastive learning
arXiv
收藏 引用
arXiv 2021年
作者: Zeng, Zhiyuan He, Keqing Yan, Yuanmeng Liu, Zijun Wu, Yanan Xu, Hong Jiang, Huixing Xu, Weiran Pattern Recognition & Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China Meituan Group Beijing China
Detecting Out-of-Domain (OOD) or unknown intents from user queries is essential in a task-oriented dialog system. A key challenge of OOD detection is to learn discriminative semantic features. Traditional cross-entrop... 详细信息
来源: 评论
Multi-View Active Fine-Grained recognition
arXiv
收藏 引用
arXiv 2022年
作者: Du, Ruoyi Yu, Wenqing Wang, Heqing Chang, Dongliang Lin, Ting-En Li, Yongbin Ma, Zhanyu Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China
As fine-grained visual classification (FGVC) being developed for decades, great works related have exposed a key direction - finding discriminative local regions and revealing subtle differences. However, unlike ident... 详细信息
来源: 评论
A novel approach to edge detection of color image based on quaternion fractional directional differentiation
A novel approach to edge detection of color image based on q...
收藏 引用
2011 International Conference on Automation and Robotics, ICAR 2011
作者: Gao, Chaobang Zhou, Jiliu Lang, Fangnian Pu, Qiang Liu, Chang College of Computer Science and Technology Chengdu University Chengdu 610106 China School of Computer Science Sichuan University Chengdu 610064 China Key Laboratory of Pattern Recognition and Intelligent Information Processing Sichuan Province Chengdu 610106 China
In this paper, we denote a color image by a quaternion function, then find edge points by solving the maximum of quaternion fractional directional differentiation(QFDD)'s norm. This method is called edge detection... 详细信息
来源: 评论
Face transformer for recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhong, Yaoyao Deng, Weihong Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China
Recently there has been a growing interest in Transformer not only in NLP but also in computer vision. We wonder if transformer can be used in face recognition and whether it is better than CNNs. Therefore, we investi... 详细信息
来源: 评论
Cycle Label-Consistent Networks for Unsupervised Domain Adaptation
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Mei Deng, Weihong The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China
Domain adaptation aims to leverage a labeled source domain to learn a classifier for the unlabeled target domain with a different distribution. Previous methods mostly match the distribution between two domains by glo... 详细信息
来源: 评论