咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 256 篇 期刊文献

馆藏范围

  • 555 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 368 篇 工学
    • 233 篇 计算机科学与技术...
    • 198 篇 软件工程
    • 82 篇 信息与通信工程
    • 60 篇 生物工程
    • 50 篇 控制科学与工程
    • 44 篇 机械工程
    • 43 篇 光学工程
    • 33 篇 生物医学工程(可授...
    • 26 篇 化学工程与技术
    • 25 篇 电气工程
    • 22 篇 电子科学与技术(可...
    • 12 篇 仪器科学与技术
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 7 篇 安全科学与工程
    • 6 篇 力学(可授工学、理...
  • 233 篇 理学
    • 115 篇 数学
    • 77 篇 物理学
    • 68 篇 生物学
    • 44 篇 统计学(可授理学、...
    • 25 篇 系统科学
    • 22 篇 化学
  • 94 篇 管理学
    • 51 篇 管理科学与工程(可...
    • 47 篇 图书情报与档案管...
    • 12 篇 工商管理
  • 20 篇 医学
    • 19 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 8 篇 法学
    • 6 篇 社会学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 6 篇 教育学
  • 6 篇 农学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 26 篇 feature extracti...
  • 25 篇 pattern recognit...
  • 20 篇 semantics
  • 19 篇 training
  • 18 篇 image segmentati...
  • 18 篇 face recognition
  • 15 篇 image processing
  • 14 篇 speech recogniti...
  • 12 篇 laboratories
  • 11 篇 convolution
  • 10 篇 deep neural netw...
  • 10 篇 machine learning
  • 10 篇 computer vision
  • 10 篇 robustness
  • 9 篇 support vector m...
  • 9 篇 deep learning
  • 8 篇 data mining
  • 8 篇 image reconstruc...
  • 8 篇 shape
  • 8 篇 character recogn...

机构

  • 72 篇 pattern recognit...
  • 27 篇 institute of ima...
  • 20 篇 pattern recognit...
  • 16 篇 the pattern reco...
  • 11 篇 national laborat...
  • 11 篇 key laboratory o...
  • 10 篇 guizhou key labo...
  • 10 篇 university of ch...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 institute for pa...
  • 9 篇 school of comput...
  • 8 篇 college of infor...
  • 8 篇 institute of pat...
  • 8 篇 pattern recognit...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 school of comput...
  • 7 篇 school of inform...

作者

  • 35 篇 guo jun
  • 31 篇 ma zhanyu
  • 30 篇 jun guo
  • 24 篇 yang jie
  • 19 篇 gang liu
  • 19 篇 deng weihong
  • 16 篇 huang xiaolin
  • 14 篇 jie yang
  • 13 篇 liu jian
  • 13 篇 honggang zhang
  • 12 篇 liu gang
  • 11 篇 shen hong-bin
  • 11 篇 wang lin
  • 10 篇 chang dongliang
  • 10 篇 jian liu
  • 10 篇 lin wang
  • 10 篇 song yi-zhe
  • 9 篇 shao zehui
  • 9 篇 yang yang
  • 9 篇 tian jinwen

语言

  • 528 篇 英文
  • 23 篇 中文
  • 6 篇 其他
检索条件"机构=Key Laboratory of Pattern Recognition and Intelligent System"
555 条 记 录,以下是251-260 订阅
排序:
Segmentation-based Euler number with multi-levels for image feature description
收藏 引用
Procedia Computer Science 2017年 111卷 245-251页
作者: Qian Zhang Lin Wang Jiang-Hao Yu Minggui Zhang Academic Affairs Office Guizhou Minzu University GuiYang 550025 China Pattern Recognition & Intelligent System Key Laboratory of Gui Zhou Province GuiYang 550025 China
This paper proposes a new and efficient image feature descriptor using Euler Number with the help of segmentation according to given number of levelsest. The proposed Segmentation-based Euler Number for image descript... 详细信息
来源: 评论
Progressive Refinement Bilateral Filter
Progressive Refinement Bilateral Filter
收藏 引用
IEEE International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)
作者: Chanyi Lu Yong Zhao Lin Wang Guiying Zhang Fujian Feng Li Zhang College of Data Science and Information Engineering Guizhou Minzu University Guiyang China School of Electronic and Computer Engineering Shenzhen Graduate School of Peking University Shenzhen China Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guizhou Minzu University Guiyang China Department of Medical Information Engineering Zunyi Medical University Zunyi China
In this paper, a coarse-to-fine framework for image noise removal is proposed. The bilateral filter is redefined by the manner of progressive refining to effectively eliminate noise, thus forming progressive refinemen... 详细信息
来源: 评论
THE JOINT EFFECT OF SEMANTIC AND SYNTACTIC WORD EMBEDDINGS ON SENTIMENT ANALYSIS  5
THE JOINT EFFECT OF SEMANTIC AND SYNTACTIC WORD EMBEDDINGS O...
收藏 引用
2016 5th IEEE International Conference on Network Infrastructure and Digital Content(IC-NIDC 2016)
作者: Shu Chen Guang Chen Wei Wang Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications
Employing pre-trained word embeddings as preliminary features in convolutional neural networks(CNN) for natural language processing(NLP) tasks has been proved to be of *** exploit this idea by taking advantage of ... 详细信息
来源: 评论
CNN-based invertible wavelet scattering for the investigation of diffusion properties of the in vivo human heart in diffusion tensor imaging
arXiv
收藏 引用
arXiv 2019年
作者: Deng, Zeyu Wang, Lihui Kuai, Zixiang Chen, Qijian Cheng, Xinyu Yang, Feng Yang, Jie Zhu, Yuemin Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province College of Computer Science and Technology Guizhou University Guiyang550025 China Imaging Center Harbin Medical University Cancer Hospital Harbin150081 China School of Computer and Information Technology Beijing Jiaotong University Beijing100044 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China University Lyon INSA Lyon CNRS Inserm IRP Metislab CREATIS UMR5220 U1206 LyonF-69621 France
In vivo diffusion tensor imaging (DTI) is a promising technique to investigate noninvasively the fiber structures of the in vivo human heart. However, signal loss due to motions remains a persistent problem in in vivo... 详细信息
来源: 评论
Learning data-adaptive nonparametric kernels
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Fanghui Huang, Xiaolin Gong, Chen Yang, Jie Li, Li Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Department of Automation Tsinghua University
Kernel methods have been extensively used in a variety of machine learning tasks such as classification, clustering, and dimensionality reduction. For complicated practical tasks, the traditional kernels, e.g., Gaussi... 详细信息
来源: 评论
J-Measure Based Pruning for Advancing Classification Performance of Information Entropy Based Rule Generation
J-Measure Based Pruning for Advancing Classification Perform...
收藏 引用
International Conference on Machine Learning and Cybernetics (ICMLC)
作者: Han Liu Mihaela Cocea Weili Ding School of Computer Science and Informatics Cardiff University Queen’s Buildings 5 The Parade Cardiff United Kingdom School of computing University of Portsmouth Buckingham Building Lion Terrace Portsmouth United Kingdom Laboratory of Pattern Recognition and Intelligent Systems Key Laboratory of Industrial Computer Control Engineering of Heibei Provience Yanshan University Qinghuangdao China
Learning of classification rules is a popular approach of machine learning, which can be achieved through two strategies, namely divide-and-conquer and separate-and-conquer. The former is aimed at generating rules in ... 详细信息
来源: 评论
Dynamic round robin scheduling algorithm for μc/OS-III
Boletin Tecnico/Technical Bulletin
收藏 引用
Boletin Tecnico/Technical Bulletin 2017年 第7期55卷 8-15页
作者: Zhang, Chunhong Ren, Jianqiang Luo, Ping College of Mathematics and Information Langfang Teachers University Langfang Hebei065000 China Institute of Pattern Recognition and Intelligent System Langfang Teachers University Langfang Hebei065000 China Langfang Key Laboratory of Intelligent Transportation System Langfang Hebei065000 China
In μC/OS-III, the traditional round robin algorithm is inefficient for tasks with the same priority. To solve this problem, this paper proposes a dynamic round robin scheduling algorithm based on the shortest remaini... 详细信息
来源: 评论
Deep crisp boundaries: From boundaries to higher-level tasks
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Yupei Zhao, Xin Li, Yin Huang, Kaiqi Center for Research on Intelligent System and Engineering Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Department of Biostatistics and Medical Informatics Department of Computer Sciences Univeristy of Wisconsin-Madison Center for Research on Intelligent System and Engineering National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China CAS Center for Excellence in Brain Science and Intelligence Technology 100190
Edge detection has made significant progress with the help of deep Convolutional Networks (ConvNet). These ConvNet based edge detectors have approached human level performance on standard benchmarks. We provide a syst... 详细信息
来源: 评论
SOUND CLASSIFICATION BASED ON SPECTROGRAM FOR SURVEILLANCE APPLICATIONS  5
SOUND CLASSIFICATION BASED ON SPECTROGRAM FOR SURVEILLANCE A...
收藏 引用
2016 5th IEEE International Conference on Network Infrastructure and Digital Content(IC-NIDC 2016)
作者: Yingjie Li Gang Liu Pattern Recognition and Intelligent System Laboratory School of Information and Communication EngineeringBeijing University of Posts and Telecommunications
This paper presents an audio event classification algorithm which automatically classifies an audio event as footstep,glass breaking,gunshot or scream mainly for surveillance ***,the Gabor feature of the audio spectro... 详细信息
来源: 评论
Image spam classification based on convolutional neural network
Image spam classification based on convolutional neural netw...
收藏 引用
2016 International Conference on Machine Learning and Cybernetics, ICMLC 2016
作者: Shang, Er-Xin Zhang, Hong-Gang Pattern Recognition and Intelligent System Laboratory Beijing University of Post and Telecommunication China
Image classification is a fundamental problem in computer vision and pattern recognition. Feature extraction is often regarded as the key for classifying images. Traditional ways rely on handcrafted features heavily, ... 详细信息
来源: 评论