The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT service...
详细信息
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT services, Mobile Edge computing (MEC) has emerged as an indispensable technology in smart health. Benefiting from the cost-effectiveness of deployment, unmanned aerial vehicles (UAVs) equipped with MEC servers in Non-Orthogonal Multiple Access (NOMA) have emerged as a promising solution for providing smart health services in proximity to medical devices (MDs). However, the escalating number of MDs and the limited availability of communication resources of UAVs give rise to a significant increase in transmission latency. Moreover, due to the limited communication range of UAVs, the geographically-distributed MDs lead to workload imbalance of UAVs, which deteriorates the service response delay. To this end, this paper proposes a UAV-enabled Distributed computation Offloading and Power control method with Multi-Agent, named DOPMA, for NOMA-based IoMT environment. Specifically, this paper introduces computation and transmission queue models to analyze the dynamic characteristics of task execution latency and energy consumption. Moreover, a credit assignment scheme-based reward function is designed considering both system-level rewards and rewards tailored to each MD, and an improved multi-agent deep deterministic policy gradient algorithm is developed to derive offloading and power control decisions independently. Extensive simulations demonstrate that the proposed method outperforms existing schemes, achieving \(7.1\%\) reduction in energy consumption and \(16\%\) decrease in average delay.
Welcome to the proceedings of GCC2004 and the city of Wuhan. Grid computing has become a mainstream research area in computer science and the GCC conference has become one of the premier forums for presentation of new...
详细信息
ISBN:
(数字)9783540302087
ISBN:
(纸本)9783540235644
Welcome to the proceedings of GCC2004 and the city of Wuhan. Grid computing has become a mainstream research area in computer science and the GCC conference has become one of the premier forums for presentation of new and exciting research in all aspectsofgridandcooperativecomputing. Theprogramcommitteeispleasedtopresent the proceedings of the 3rd International Conference on Grid and Cooperative Comp- ing (GCC2004), which comprises a collection of excellent technical papers, posters, workshops, and keynote speeches. The papers accepted cover a wide range of exciting topics, including resource grid and service grid, information grid and knowledge grid, grid monitoring,managementand organizationtools, grid portal, grid service, Web s- vices and their QoS, service orchestration, grid middleware and toolkits, software glue technologies, grid security, innovative grid applications, advanced resource reservation andscheduling,performanceevaluationandmodeling,computer-supportedcooperative work, P2P computing, automatic computing, and meta-information management. The conference continues to grow and this year a record total of 581 manuscripts (including workshop submissions) were submitted for consideration. Expecting this growth, the size of the program committee was increased from 50 members for GCC 2003 for 70 in GCC 2004. Relevant differences from previous editions of the conf- ence: it is worth mentioning a signi?cant increase in the number of papers submitted by authors from outside China; and the acceptance rate was much lower than for p- vious GCC conferences. From the 427 papers submitted to the main conference, the program committee selected only 96 regular papers for oral presentation and 62 short papers for poster presentation in the program.
Non-overlapping Cross-domain Sequential Recommendation (NCSR) is the task that focuses on domain knowledge transfer without overlapping entities. Compared with traditional Cross-domain Sequential Recommendation (CSR),...
详细信息
Non-overlapping Cross-domain Sequential Recommendation (NCSR) is the task that focuses on domain knowledge transfer without overlapping entities. Compared with traditional Cross-domain Sequential Recommendation (CSR), NCSR poses several challenges: 1) NCSR methods often rely on explicit item IDs, overlooking semantic information among entities. 2) Existing CSR mainly relies on domain alignment for knowledge transfer, risking semantic loss during alignment. 3) Most previous studies do not consider the many-to-one characteristic, which is challenging because of the utilization of multiple source domains. Given the above challenges, we introduce the prompt learning technique for Many-to-one Non-overlapping Cross-domain Sequential Recommendation (MNCSR) and propose a Text-enhanced Co-attention Prompt Learning Paradigm (TCPLP). Specifically, we capture semantic meanings by representing items through text rather than IDs, leveraging natural language universality to facilitate cross-domain knowledge transfer. Unlike prior works that need to conduct domain alignment, we directly learn transferable domain information, where two types of prompts, i.e., domain-shared and domain-specific prompts, are devised, with a co-attention-based network for prompt encoding. Then, we develop a two-stage learning strategy, i.e., pre-train & prompt-tuning paradigm, for domain knowledge pre-learning and transferring, respectively. We conduct extensive experiments on three datasets and the experimental results demonstrate the superiority of our TCPLP. Our source codes have been publicly released.
暂无评论