咨询与建议

限定检索结果

文献类型

  • 154 篇 会议
  • 44 篇 期刊文献

馆藏范围

  • 198 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 118 篇 工学
    • 79 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 51 篇 信息与通信工程
    • 21 篇 生物工程
    • 20 篇 光学工程
    • 14 篇 化学工程与技术
    • 12 篇 生物医学工程(可授...
    • 9 篇 仪器科学与技术
    • 8 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 8 篇 控制科学与工程
    • 7 篇 机械工程
    • 6 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 3 篇 动力工程及工程热...
    • 3 篇 建筑学
    • 3 篇 环境科学与工程(可...
  • 74 篇 理学
    • 33 篇 物理学
    • 26 篇 数学
    • 23 篇 生物学
    • 16 篇 化学
    • 9 篇 统计学(可授理学、...
    • 4 篇 大气科学
  • 36 篇 管理学
    • 27 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 8 篇 医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 4 篇 教育学
    • 4 篇 教育学

主题

  • 26 篇 feature extracti...
  • 12 篇 deep learning
  • 12 篇 training
  • 10 篇 neural networks
  • 10 篇 convolution
  • 10 篇 accuracy
  • 9 篇 speech processin...
  • 9 篇 semantics
  • 6 篇 speech enhanceme...
  • 6 篇 data models
  • 6 篇 adaptation model...
  • 5 篇 object detection
  • 5 篇 noise reduction
  • 5 篇 transformers
  • 5 篇 noise
  • 5 篇 attention mechan...
  • 4 篇 raman spectrosco...
  • 4 篇 noise measuremen...
  • 4 篇 signal processin...
  • 4 篇 acoustics

机构

  • 54 篇 school of comput...
  • 43 篇 xinjiang key lab...
  • 27 篇 key laboratory o...
  • 16 篇 school of inform...
  • 13 篇 department of el...
  • 10 篇 xinjiang key lab...
  • 9 篇 school of intell...
  • 8 篇 school of inform...
  • 7 篇 department of el...
  • 7 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 china mobile res...
  • 7 篇 college of infor...
  • 6 篇 xinjiang key lab...
  • 6 篇 college of softw...
  • 6 篇 college of softw...
  • 5 篇 school of comput...
  • 5 篇 key laboratory o...
  • 5 篇 xinjiang key lab...
  • 4 篇 college of compu...

作者

  • 23 篇 hamdulla askar
  • 22 篇 jia zhenhong
  • 12 篇 liang he
  • 12 篇 shi fei
  • 12 篇 he liang
  • 12 篇 askar hamdulla
  • 11 篇 gang zhou
  • 11 篇 zhenhong jia
  • 10 篇 wang jiajia
  • 10 篇 zhou gang
  • 9 篇 ying hu
  • 9 篇 chen chen
  • 9 篇 lv xiaoyi
  • 9 篇 qin xizhong
  • 9 篇 zhihua huang
  • 8 篇 chen cheng
  • 7 篇 fei shi
  • 7 篇 huang xiaohui
  • 7 篇 hu ying
  • 7 篇 ablimit mijit

语言

  • 194 篇 英文
  • 3 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"机构=Key Laboratory of Signal Detection and Processing"
198 条 记 录,以下是61-70 订阅
排序:
Obstacle detection in Off-road Environments Based on LiDAR  4
Obstacle Detection in Off-road Environments Based on LiDAR
收藏 引用
4th IEEE International Conference on Pattern Recognition and Machine Learning, PRML 2023
作者: Ahat, Arzigul Firkat, Eksan Mijit, Tayir Hamdulla, Askar Xinjiang University of China Xinjiang Key Laboratory of Signal Detection and Processing School of Information Science and Engineering Urumqi China
Mapping off-road terrain is a challenging task, especially when compared to urban terrain. The complexity and roughness of off-road terrain make it difficult to achieve accurate mapping results. Obstacle detection in ... 详细信息
来源: 评论
Deep neural network for MIMO-SCMA detection  5
Deep neural network for MIMO-SCMA detection
收藏 引用
2023 5th International Conference on Information Science, Electrical, and Automation Engineering, ISEAE 2023
作者: Zhang, Shiwei Ge, Wenping Key Laboratory of Signal Detection and Processing College of Information Science and Engineering Xinjiang University Xinjiang Urumqi830017 China
This article introduces deep learning into the multiple-input multiple-output (MIMO) sparse code multiple access (SCMA) system and proposes a MIMO-SCMA detection scheme based on deep neural networks (DNN) to improve b... 详细信息
来源: 评论
A Lightweight Music Source Separation Model with Graph Convolution Network  1
收藏 引用
18th National Conference on Man-Machine Speech Communication, NCMMSC 2023
作者: Zhu, Mengying Wang, Liusong Hu, Ying School of Computer Science and Technology Xinjiang University Urumqi China Key Laboratory of Signal Detection and Processing in Xinjiang Urumqi China
With the rapid advancement of deep neural networks, there has been a significant improvement in the performance of music source separation methods. However, most of them primarily focus on improving their separation p... 详细信息
来源: 评论
Enhancing Relational Classification Model Fusing Entity and Sentence Semantic Information  4
Enhancing Relational Classification Model Fusing Entity and ...
收藏 引用
4th IEEE International Conference on Pattern Recognition and Machine Learning, PRML 2023
作者: Wei, Chunji Qin, Xizhong Yuan, Taiping Xinjiang University of China Xinjiang Key Laboratory of Signal Detection and Processing School of Information Science and Engineering Urumqi830017 China
Relationship classification aims at mining the relationship between two entities in a sentence and is an essential basis for the information extraction task. However, traditional relationship classification methods, w... 详细信息
来源: 评论
DFE-GCN: Dual Feature Enhanced Graph Convolutional Network for Controversy detection
收藏 引用
Computers, Materials & Continua 2023年 第10期77卷 893-909页
作者: Chengfei Hua Wenzhong Yang Liejun Wang Fuyuan Wei KeZiErBieKe HaiLaTi Yuanyuan Liao College of Software Xinjiang UniversityUrumqi830000China Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region Xinjiang UniversityUrumqi830000China Key Laboratory of Multilingual Information Technology in Xinjiang Uygur Autonomous Region Xinjiang UniversityUrumqi830000China
With the development of social media and the prevalence of mobile devices,an increasing number of people tend to use social media platforms to express their opinions and attitudes,leading to many online *** online con... 详细信息
来源: 评论
Sound source localization and detection based on parameter transfer learning  24
Sound source localization and detection based on parameter t...
收藏 引用
24th International Congress on Acoustics, ICA 2022
作者: Sun, Xinghao Ma, Mengzhen Hu, Ying Department of Information Science and Engineering Xinjiang University Urumqi830000 China Key Laboratory of Signal Detection and Processing in Xinjiang China
Sound source localization and detection is a joint task of identifying the presence of individual sound events and locating the sound sources in space. In order to promote the combination of two different tasks, we pr... 详细信息
来源: 评论
Improving Speech Perceptual Quality and Intelligibility Through Sub-band Temporal Envelope Characteristics  18th
Improving Speech Perceptual Quality and Intelligibility Thr...
收藏 引用
18th National Conference on Man-Machine Speech Communication, NCMMSC 2023
作者: Wu, Ruilin Huang, Zhihua Song, Jingyi Liang, Xiaoming School of Computer Science and Technology Xinjiang University Urumqi China Key Laboratory of Signal Detection and Processing in Xinjiang Urumqi China
In the speech enhancement (SE) model, using auxiliary loss based on acoustic parameters can improve enhancement effects. However, currently used acoustic parameters focus on frequency domain information, neglecting th... 详细信息
来源: 评论
MSFSAN: A Novel Multi-Scale Spatio-Temporal Feature Screening Attention Network for Urban Carbon Emission Prediction
MSFSAN: A Novel Multi-Scale Spatio-Temporal Feature Screenin...
收藏 引用
2024 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2024
作者: Wang, Ben Qin, Xizhong Qin, Jiwei Zhang, Xiaoyu Ma, Haodong College of Computer Science and Technology Xinjiang University Xinjiang Key Laboratory of Signal Detection and Processing Ürümqi830046 China
In order to cope with the increasingly severe global energy conservation and emission reduction problems, research on urban carbon emission prediction is of great significance. The existing methods mainly use time ser... 详细信息
来源: 评论
A Rumor detection Method Incorporating Correlation Features  3
A Rumor Detection Method Incorporating Correlation Features
收藏 引用
3rd International Conference on Pattern Recognition and Machine Learning, PRML 2022
作者: Cai, Xiangsheng Tohti, Turdi Hamdulla, Askar Xinjiang University of China Xinjiang Key Laboratory of Signal Detection and Processing School of Information Science and Engineering Urumqi830017 China
Most of the rumors on social media (e.g., Twitter) revolve around a certain domain or topic, which means that they want to express roughly the same meaning, only the way of expression or the words used are different. ... 详细信息
来源: 评论
COT2DNet: Contextual 2D Attention for Scene Text Recognition  2
COT2DNet: Contextual 2D Attention for Scene Text Recognition
收藏 引用
2nd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics, AIHCIR 2023
作者: Qian, Yefei Ibrayim, Mayire Hamdulla, Askar Zhang, Chunhu Xinjiang Key Laboratory of Signal Detection and Processing Urumqi830017 China School of Computer Science and Technology Xinjiang University Xinjiang China
Although scene text recognition (STR) methods have made great progress, reading the text of irregularly shaped scenes remains a challenge. The current conversion of two-dimensional (2D) images to one-dimensional (1D) ... 详细信息
来源: 评论