咨询与建议

限定检索结果

文献类型

  • 159 篇 期刊文献
  • 141 篇 会议

馆藏范围

  • 300 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 193 篇 工学
    • 135 篇 计算机科学与技术...
    • 119 篇 软件工程
    • 61 篇 信息与通信工程
    • 30 篇 电气工程
    • 28 篇 生物医学工程(可授...
    • 27 篇 生物工程
    • 21 篇 光学工程
    • 21 篇 控制科学与工程
    • 12 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 仪器科学与技术
    • 7 篇 机械工程
    • 5 篇 安全科学与工程
    • 4 篇 动力工程及工程热...
  • 112 篇 理学
    • 52 篇 数学
    • 46 篇 物理学
    • 33 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 11 篇 化学
    • 10 篇 系统科学
  • 43 篇 管理学
    • 25 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 26 篇 医学
    • 22 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 6 篇 法学
    • 5 篇 社会学
  • 5 篇 教育学
  • 3 篇 文学
  • 3 篇 农学
  • 2 篇 经济学

主题

  • 18 篇 feature extracti...
  • 16 篇 electroencephalo...
  • 16 篇 training
  • 11 篇 signal processin...
  • 11 篇 semantics
  • 10 篇 semantic segment...
  • 10 篇 task analysis
  • 8 篇 acoustics
  • 8 篇 visualization
  • 8 篇 speech synthesis
  • 8 篇 adaptation model...
  • 7 篇 transformers
  • 7 篇 speech processin...
  • 7 篇 federated learni...
  • 6 篇 emotion recognit...
  • 5 篇 image segmentati...
  • 5 篇 neural networks
  • 5 篇 speech enhanceme...
  • 5 篇 convolution
  • 5 篇 graph neural net...

机构

  • 54 篇 tianjin key labo...
  • 26 篇 college of intel...
  • 25 篇 japan advanced i...
  • 22 篇 school of comput...
  • 21 篇 tianjin key labo...
  • 18 篇 cas center for e...
  • 16 篇 gansu provincial...
  • 16 篇 tianjin key labo...
  • 12 篇 key laboratory o...
  • 11 篇 state key labora...
  • 11 篇 key laboratory o...
  • 10 篇 school of comput...
  • 10 篇 joint research c...
  • 9 篇 institute of art...
  • 9 篇 shenzhen institu...
  • 9 篇 institute of aut...
  • 9 篇 school of future...
  • 8 篇 school of artifi...
  • 7 篇 school of softwa...
  • 7 篇 department of el...

作者

  • 33 篇 wang longbiao
  • 30 篇 dang jianwu
  • 25 篇 jianwu dang
  • 22 篇 longbiao wang
  • 16 篇 ge meng
  • 14 篇 li chenglong
  • 13 篇 hu bin
  • 11 篇 qin yongbin
  • 11 篇 tang jin
  • 11 篇 wang lihui
  • 10 篇 zhang qiang
  • 10 篇 luo bin
  • 9 篇 bin hu
  • 9 篇 meng ge
  • 9 篇 yang xin
  • 8 篇 mei yu
  • 8 篇 chen yanping
  • 7 篇 wang xiaobao
  • 7 篇 jie gao
  • 7 篇 lu bao-liang

语言

  • 280 篇 英文
  • 17 篇 其他
  • 5 篇 中文
检索条件"机构=Key Laboratory of Social Computing and Cognitive Intelligence(Dalian University of Technology)"
300 条 记 录,以下是1-10 订阅
排序:
Model Recovery in Federated Unlearning With Restricted Server Data Resources
收藏 引用
IEEE Internet of Things Journal 2025年 第11期12卷 17920-17935页
作者: Zhang, Jianxin Zhao, Mengda Wang, Zhenwei Su, Weijian Wang, Pengfei Dalian Minzu University School of Computer Science and Engineering Dalian116600 China Dalian University of Technology School of Computer Science and Technology Dalian116024 China Ministry of Education Key Laboratory of Social Computing and Cognitive Intelligence Dalian University of Technology Dalian116024 China
Recent model recovery methods in federated unlearning (FUL) either rely on additional communication with the remaining clients or require large amounts of high-quality data from the server for training, overlooking sc... 详细信息
来源: 评论
HALO: Half Life-Based Outdated Fact Filtering in Temporal Knowledge Graphs  25
HALO: Half Life-Based Outdated Fact Filtering in Temporal Kn...
收藏 引用
Companion Proceedings of the ACM on Web Conference 2025
作者: Feng Ding Tingting Wang Yupeng Gao Shuo Yu Jing Ren Feng Xia Dalian University of Technology Dalian China Dalian University of Technology Dalian China and Key Laboratory of Social Computing and Cognitive Intelligence Ministry of Education Dalian China RMIT University Melbourne Australia
Outdated facts in temporal knowledge graphs (TKGs) result from exceeding the expiration date of facts, which negatively impact reasoning performance on TKGs. However, existing reasoning methods primarily focus on posi... 详细信息
来源: 评论
Speed up Federated Unlearning With Temporary Local Models
IEEE Transactions on Sustainable Computing
收藏 引用
IEEE Transactions on Sustainable computing 2025年
作者: Ameen, Muhammad Wang, Pengfei Su, Weijian Wei, Xiaopeng Zhang, Qiang Dalian University of Technology School of Computer Science and Technology Dalian116024 China Ministry of Education Key Laboratory of Social Computing and Cognitive Intelligence Dalian University of Technology Dalian116024 China Yidatec Co. Ltd Dalian116085 China
Federated unlearning (FUL) is a solution aimed at addressing the problem of removing data contributions from trained federated learning (FL) models. Existing FUL methods only focus on iterative unlearning of... 详细信息
来源: 评论
A Survey on Federated Long-Tailed Learning
收藏 引用
Jisuanji Xuebao/Chinese Journal of Computers 2025年 第4期48卷 779-807页
作者: Zhou, Yi-Zhi Wang, Jun-Xiao Xie, Xin Wang, Peng-Fei Jia, Xi-Bei Qi, Heng Qin, Yu-Chen School of Computer Science and Technology Dalian University of Technology Liaoning Dalian116024 China Key Laboratory of Social Computing and Cognitive Intelligence(Dalian University of Technology) Ministry of Education Liaoning Dalian116024 China School of Cyberspace Security Guangzhou University Guangzhou510006 China College of Intelligence and Computing Tianjin University Tianjin300072 China Shenzhen Audaque Data Technology Co. Ltd. Guangdong Shenzhen518057 China
Federated learning, a machine learning method built on distributed training, effectively navigates the problem of data privacy leakage among users that joint modeling introduces. This effectiveness has led to the wide... 详细信息
来源: 评论
Federated Unlearning with Fast Recovery
收藏 引用
IEEE Transactions on Mobile computing 2025年
作者: Zhou, Changjun Pan, Chenglin Li, Minglu Wang, Pengfei Zhejiang Normal University School of Computer Science and Technology Jinhua321000 China Dalian University of Technology School of Computer Science and Technology Dalian116024 China Dalian University of Technology Key Laboratory of Social Computing and Cognitive Intelligence Ministry of Education Dalian116024 China Yidatec Co. Ltd Dalian116085 China
Recent federated unlearning studies mainly focus on removing the target client's contributions from the global model permanently. However, the requirement for accommodating temporary user exits or additions in fed... 详细信息
来源: 评论
A Prompt Learning Framework with Large Language Model Augmentation for Few-shot Multi-label Intent Detection
A Prompt Learning Framework with Large Language Model Augmen...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Zhuang, Ning Wei, Xiao Li, Junlei Wang, Xiaobao Wang, Chenyang Wang, Longbiao Dang, Jianwu Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China Shenzhen China Co. Ltd. Tianjin China Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
Intent detection (ID) is essential in spoken language understanding, especially in multi-label settings where intent labels are interdependent and diverse. Existing methods like SE-MLP and QA-FT struggle in few-shot s... 详细信息
来源: 评论
Class Semantic Prompts Enhanced Prototypical Fusion Method for Few-shot Named Entity Recognition
Class Semantic Prompts Enhanced Prototypical Fusion Method f...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Yu, Mei Tao, Yuang Zhao, Mankun Xu, Tianyi Meng, Zechen Zhang, Wenbin Yu, Jian School of Future Technology Tianjin University Tianjin300350 China College of Intelligence and Computing Tianjin University Tianjin300350 China Tianjin Key Laboratory of Cognitive Computing and Application Tianjin300350 China Tianjin Key Laboratory of Advanced Networking Tianjin300350 China Information and Network Center Tianjin University Tianjin300350 China
Few-shot named entity recognition is to identify named entities in scenarios where labeled data is scarce. Existing prototype building methods ignore the use of class semantic and it is difficult to obtain accurate pr... 详细信息
来源: 评论
Long-range Brain Graph Transformer
arXiv
收藏 引用
arXiv 2025年
作者: Yu, Shuo Jin, Shan Li, Ming Sarwar, Tabinda Xia, Feng School of Computer Science and Technology Dalian University of Technology China Key Laboratory of Social Computing and Cognitive Intelligence Dalian University of Technology Ministry of Education China School of Software Dalian University of Technology China Zhejiang Institute of Optoelectronics China Zhejiang Key Laboratory of Intelligent Education Technology and Application Zhejiang Normal University China School of Computing Technologies RMIT University Australia
Understanding communication and information processing among brain regions of interest (ROIs) is highly dependent on long-range connectivity, which plays a crucial role in facilitating diverse functional neural integr... 详细信息
来源: 评论
ApriDS: An evidence linkage network construction model for judgment documents
收藏 引用
Journal of King Saud university - Computer and Information Sciences 2025年 第1期37卷 1-13页
作者: Zhou, Yulin Qin, Yongbin Lin, Chuan Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry Guizhou University Guiyang 550025 China State Key Laboratory of Public Big Data Guizhou University Guiyang 550025 China College of Computer Science & Technology Guizhou University Guiyang 550025 China
Evidence serves as the basis for determining facts in the judicial trial process, and exploring the correlation between evidence has become an essential task. However, there is uncertainty and unreliability of evidenc... 详细信息
来源: 评论
Augmenting Short Enrollment Speech via Synthesis for Target Speaker Extraction
Augmenting Short Enrollment Speech via Synthesis for Target ...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Huang, Zikang Lin, Jingru Ge, Meng Jiang, Yu Wang, Xiaobao Wang, Longbiao Dang, Jianwu Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China Shenzhen China Department of Electrical and Computer and Engineering National University of Singapore Singapore Co. Ltd. Tianjin China Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
A high-quality enrollment speech is crucial to target speaker extraction (TSE), since it provides essential cues for identifying the target speaker in the mixture. However, real applications usually only permit a shor... 详细信息
来源: 评论