The Super-Low Frequency (SLF) electromag- netic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we ...
详细信息
The Super-Low Frequency (SLF) electromag- netic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theore- tical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously show- ing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF inter- pretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.
Digitizing the land surface temperature(T_(s))and surface soil moisture(m _(v))is essential for developing the intelligent Digital ***,we developed a two parameter physical-based passive microwave remote sensing model...
详细信息
Digitizing the land surface temperature(T_(s))and surface soil moisture(m _(v))is essential for developing the intelligent Digital ***,we developed a two parameter physical-based passive microwave remote sensing model for jointly retrieving T_(s) and m_(v) using the dual-polarized T_(b) of Aqua satellite advanced microwave scanning radiometer(AMSR-E)C-band(6.9 GHz)based on the simplified radiative transfer *** using in situ T_(s) and m_(v) in southern China showed the average root mean square errors(RMSE)of T s and m_(v) retrievals reach 2.42 K(R^(2)=0.61,n=351)and 0.025 g cm^(−3)(R^(2)=0.68,n=663),*** results were also validated using global in situ T_(s)(n=2362)and m_(v)(n=1657)of International Soil Moisture *** corresponding RMSE are 3.44 k(R 2=0.86)and 0.039 g cm^(−3)(R^(2)=0.83),*** monthly variations of model-derived Ts and mv are highly consistent with those of the Moderate Resolution Imaging Spectroradiometer T_(s)(R^(2)=0.57;RMSE=2.91 k)and ECV_SM m_(v)(R^(2)=0.51;RMSE=0.045 g cm^(−3)),***,this paper indicates an effective way to jointly modeling T_(s) and m_(v) using passive microwave remote sensing.
Airborne laser scanning (ALS) is a technique used to obtain Digital Surface Models (DSM) and Digital Terrain Models (DTM) efficiently, and filtering is the key procedure used to derive DTM from point clouds. Gen...
详细信息
Airborne laser scanning (ALS) is a technique used to obtain Digital Surface Models (DSM) and Digital Terrain Models (DTM) efficiently, and filtering is the key procedure used to derive DTM from point clouds. Generating seed points is an initial step for most filtering algorithms, whereas existing algorithms usually define a regular window size to generate seed points. This may lead to an inadequate density of seed points, and further introduce error type I, especially in steep terrain and forested areas. In this study, we propose the use of object- based analysis to derive surface complexity information from ALS datasets, which can then be used to improve seed point generation. We assume that an area is complex if it is composed of many small objects, with no buildings within the area. Using these assumptions, we propose and implement a new segmentation algorithm based on a grid index, which we call the Edge and Slope Restricted Region Growing (ESRGG) algorithm. Surface complexity information is obtained by statistical analysis of the number of objects derived by segmentation in each area. Then, for complex areas, a smaller window size is defined to generate seed points. Experimental results show that the proposed algorithm could greatly improve the filtering results in complex areas, especially in steep terrain and forested areas.
Low-poly style illustrations, which have 3D abstract appearance, have become a popular stylish recently. Most previous methods require special knowledges in 3D modeling and need tedious interactions. We present an int...
详细信息
ISBN:
(纸本)9781509060689
Low-poly style illustrations, which have 3D abstract appearance, have become a popular stylish recently. Most previous methods require special knowledges in 3D modeling and need tedious interactions. We present an interactive system for non-expert users to easily manipulate the low-poly style illustration. Our system consists of two parts: vertex sampling and mesh rendering. In the vertex sampling stage, we extract a set of candidate points from the image and rank them according to their importance of structure preserving using adaptive thinning. Based on the pre-ranked point list, the user can select an arbitrary number of vertices for the triangle mesh construction. In the mesh rendering stage, we optimize triangle colors to create stereo-looking low-polys. We also provide three tools for exible modication of vertex numbers, color contrast, and local region emphasis. The experiment results demonstrate that our system outperforms state-of-the-art method via simple user interactions.
Domain generalization aims to apply knowledge gained from multiple labeled source domains to unseen target domains. The main difficulty comes from the dataset bias: Training data and test data have different distribut...
详细信息
Recently, numerous salient object detection methods are proposed for different data types. And a reliable method, which can accurately extract complete salient objects, is beneficial to various vision tasks. However, ...
详细信息
ISBN:
(纸本)9781509060689
Recently, numerous salient object detection methods are proposed for different data types. And a reliable method, which can accurately extract complete salient objects, is beneficial to various vision tasks. However, existing methods may fail in highlighting the entire salient object uniformly. In this work, we propose a simple and universal framework aiming to improve the detection result of existing methods. To remove inaccurate salient regions, we apply location prior and adaptive de-noising to prior saliency maps extracted from existing methods in the pre-processing step. Then, an iteration optimization algorithm considering local smoothness and global similarity is introduced to refine the pre-processed saliency map. The experimental results show that the proposed framework can universally enhance the performance of state-of-the-art salient object detection methods for 2D, 3D and light field data.
Vehicle re-identification (re-id) plays an important role in the automatic analysis of the drastically increasing urban surveillance videos. Similar to the other image retrieval problems, vehicle re-id suffers from th...
详细信息
ISBN:
(纸本)9781509060689
Vehicle re-identification (re-id) plays an important role in the automatic analysis of the drastically increasing urban surveillance videos. Similar to the other image retrieval problems, vehicle re-id suffers from the difficulties caused by various poses of vehicles, diversified illuminations, and complicated environments. Triplet-wise training of convolutional neural network (CNN) has been studied to address these challenges, where the CNN is adopted to automate the feature extraction from images, and the training adopts triplets of (query, positive example, negative example) to capture the relative similarity between them to learn representative features. The traditional triplet-wise training is weakly constrained and thus fails to achieve satisfactory results. We propose to improve the triplet-wise training at two aspects: first, a stronger constraint namely classification-oriented loss is augmented with the original triplet loss; second, a new triplet sampling method based on pairwise images is designed. Our experimental results demonstrate the effectiveness of the proposed methods that achieve superior performance than the state-of-the-arts on two vehicle re-id datasets, which are derived from real-world urban surveillance videos.
This paper is concerned with developing a novel distributed Kalman filtering algorithm over wireless sensor networks based on randomized consensus strategy. Compared with centralized algorithm, distributed filtering t...
详细信息
In both H.264 and HEVC, context-adaptive binary arithmetic coding (CABAC) is adopted as the entropy coding method. CABAC relies on manually designed binarization processes as well as handcrafted context models, which ...
详细信息
Motion compensation is a fundamental technology in video coding to remove the temporal redundancy between video frames. To further improve the coding efficiency, sub-pel motion compensation has been utilized, which re...
详细信息
暂无评论