咨询与建议

限定检索结果

文献类型

  • 305 篇 会议
  • 167 篇 期刊文献

馆藏范围

  • 472 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 154 篇 信息与通信工程
    • 136 篇 计算机科学与技术...
    • 117 篇 软件工程
    • 53 篇 控制科学与工程
    • 52 篇 仪器科学与技术
    • 41 篇 光学工程
    • 34 篇 电子科学与技术(可...
    • 34 篇 环境科学与工程(可...
    • 34 篇 生物工程
    • 32 篇 测绘科学与技术
    • 21 篇 航空宇航科学与技...
    • 19 篇 电气工程
    • 18 篇 机械工程
    • 12 篇 土木工程
    • 11 篇 建筑学
    • 10 篇 网络空间安全
    • 9 篇 材料科学与工程(可...
    • 7 篇 化学工程与技术
    • 6 篇 动力工程及工程热...
  • 158 篇 理学
    • 85 篇 数学
    • 44 篇 物理学
    • 36 篇 生物学
    • 25 篇 统计学(可授理学、...
    • 19 篇 化学
    • 7 篇 大气科学
    • 7 篇 地球物理学
    • 6 篇 地质学
  • 35 篇 管理学
    • 17 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
  • 25 篇 农学
    • 25 篇 农业资源与环境
  • 3 篇 医学
  • 2 篇 经济学
  • 2 篇 艺术学
  • 1 篇 法学
  • 1 篇 军事学

主题

  • 60 篇 synthetic apertu...
  • 24 篇 feature extracti...
  • 22 篇 image coding
  • 22 篇 training
  • 21 篇 radar polarimetr...
  • 19 篇 remote sensing
  • 16 篇 radar imaging
  • 15 篇 encoding
  • 15 篇 image reconstruc...
  • 13 篇 deep neural netw...
  • 13 篇 image segmentati...
  • 13 篇 visualization
  • 13 篇 semantics
  • 13 篇 satellites
  • 12 篇 three-dimensiona...
  • 12 篇 mathematical mod...
  • 11 篇 object detection
  • 11 篇 video coding
  • 11 篇 azimuth
  • 11 篇 decoding

机构

  • 139 篇 cas key laborato...
  • 58 篇 aerospace inform...
  • 55 篇 key laboratory o...
  • 54 篇 school of electr...
  • 42 篇 institute of ele...
  • 40 篇 university of ch...
  • 34 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 18 篇 department of au...
  • 13 篇 the cas key labo...
  • 13 篇 key laboratory o...
  • 13 篇 key laboratory o...
  • 12 篇 suzhou aerospace...
  • 9 篇 microsoft resear...
  • 9 篇 graduate univers...
  • 8 篇 cas key laborato...
  • 7 篇 the cas key labo...
  • 6 篇 university of sc...
  • 6 篇 key laboratory o...
  • 6 篇 national key lab...

作者

  • 45 篇 chen zhibo
  • 35 篇 qiu xiaolan
  • 31 篇 li houqiang
  • 27 篇 xiaolan qiu
  • 26 篇 dong liu
  • 25 篇 liu dong
  • 24 篇 ding chibiao
  • 23 篇 zhibo chen
  • 23 篇 houqiang li
  • 22 篇 li li
  • 19 篇 zhou wei
  • 18 篇 chibiao ding
  • 18 篇 zhang zhe
  • 17 篇 zhou wengang
  • 17 篇 wu yirong
  • 17 篇 feng wu
  • 16 篇 zhang bingchen
  • 15 篇 li xin
  • 14 篇 xian sun
  • 14 篇 bin lei

语言

  • 459 篇 英文
  • 7 篇 中文
  • 6 篇 其他
检索条件"机构=Key Laboratory of Spatial Information Processing and Application System Technology IECAS"
472 条 记 录,以下是151-160 订阅
排序:
The Potential of Multi-Agent Consensus Equilibrium for Synthetic Aperture Radar processing  15
The Potential of Multi-Agent Consensus Equilibrium for Synth...
收藏 引用
15th European Conference on Synthetic Aperture Radar, EUSAR 2024
作者: Fan, Yizhe Li, Jie Wang, Kun Zhang, Bingchen Wu, Yirong Aerospace Information Research Institute Chinese Academy of Sciences Beijing100094 China Key Laboratory of Technology in Geo-spatial Information Processing and Application System Beijing100190 China School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing101408 China
Multi-agent consensus equilibrium(MACE) mechanism is a generalization of popular used PnP-ADMM method in computational imaging. We propose a novel SAR processing framework based on MACE mechanism, named by MACE-SAR. T... 详细信息
来源: 评论
Curved-path SAR geolocation error analysis based on BP algorithm  38
Curved-path SAR geolocation error analysis based on BP algor...
收藏 引用
38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
作者: Liu, Junbin Qiu, Xiaolan Huang, Lijia Ding, Chibiao Liu, Ming University of Chinese Academy of Sciences China Key Laboratory of Technology in Geo-spatial Information Processing and Application System CAS China Institute of Electronics Chinese Academy of Sciences China National Disaster Reduction Center Ministry of Civil Affairs NDRCC China
The theoretical modeling and analysis of SAR location error play an important role in SAR system design and error source budget. Existing SAR geolocation error models are mainly implicit, which are not easy to do anal... 详细信息
来源: 评论
Multi-scale Region-level Graph Convolutional Network for Unsupervised SAR image Change Detection
Multi-scale Region-level Graph Convolutional Network for Uns...
收藏 引用
2024 International Conference on Remote Sensing, Mapping, and Image processing, RSMIP 2024
作者: Zhu, Jingxing Liu, Rui Wang, Feng You, Hongjian Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Chinese Academy of Sciences Beijing China Aerospace Information Research Institute Chinese Academy of Sciences Beijing China School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
With the rapid advancement of synthetic aperture radar (SAR) sensors, it has become more important to extract change information between high-resolution SAR images. Considering the efficacy and robustness of segmentat... 详细信息
来源: 评论
Electromagnetic Simulation Aided SAR Target Classification Via Deep Domain Adaptation
Electromagnetic Simulation Aided SAR Target Classification V...
收藏 引用
2021 CIE International Conference on Radar, Radar 2021
作者: Lv, Xiaoling Qiu, Xiaolan Yu, Wenming Aerospace Information Research Institute Chinese Academy of Sciences School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China Suzhou Aerospace Information Research Institute Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Suzhou China Southeast University State Key Laboratory of Millimeter Waves Nanjing China
Convolutional neural networks (CNNs) have made tremendous success in optical images classification recently. However, in synthetic aperture radar (SAR) target classification, it is difficult to annotate a large amount... 详细信息
来源: 评论
Object-based method for optical and SAR images change detection
Object-based method for optical and SAR images change detect...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Wan, Ling Zhang, Tao You, Hongjian Key Laboratory of Technology in Geo-spatial Information Processing and Application System Beijing100190 China Institute of Electronics Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100039 China
This study introduces an automatic method for change detection of multi-sensor remote-sensing images (e.g. optical and synthetic aperture radar (SAR) images). As object-based image analysis can effectively reduce the ... 详细信息
来源: 评论
DEEP UNFOLDING NETWORK FOR SPARSE SAR IMAGING BASED ON COMPOUND REGULARIZATION
DEEP UNFOLDING NETWORK FOR SPARSE SAR IMAGING BASED ON COMPO...
收藏 引用
IET International Radar Conference 2023, IRC 2023
作者: Zhou, Guoru Xu, Zhongqiu Fan, Yizhe Zhang, Zhe Zhang, Bingchen Wu, Yirong Aerospace Information Research Institute Chinese Academy of Sciences Beijing China Key Laboratory of Technology in Geo-spatial Information Processing and Application System Chinese Academy of Sciences Beijing China School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
How to get an accurate image of multi-class targets scene is the key to synthetic aperture radar (SAR) imaging research. In sparse SAR imaging, compound regularization constrains multi-class target features by setting... 详细信息
来源: 评论
Improve spaceborne SAR geometric accuracy using DORIS
Improve spaceborne SAR geometric accuracy using DORIS
收藏 引用
IET International Radar Conference 2009
作者: Jiayin, Liu Wen, Hong Yueguan, Lin Key Laboratory of Technology in Geo-spatial Information Processing and Application System Institute of Electronics Chinese Academy of Sciences Beijing 100190 China National Key Laboratory of Microwave Imaging Technology Institute of Electronics Chinese Academy of Sciences Beijing 100190 China Graduate University Chinese Academy of Sciences Beijing 100190 China
The paper analyzes the effects of the orbit position errors in terms of the geometric accuracy of the space-borne SAR based on the range-Doppler method. The paper gives the simulation experiment results of the space-b... 详细信息
来源: 评论
AutoDerain: Memory-efficient Neural Architecture Search for Image Deraining
AutoDerain: Memory-efficient Neural Architecture Search for ...
收藏 引用
IEEE Visual Communications and Image processing (VCIP)
作者: Jun Fu Chen Hou Zhibo Chen CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System University of Science and Technology of China Hefei China
Learning-based image deraining methods have achieved remarkable success in the past few decades. Currently, most deraining architectures are developed by human experts, which is a laborious and error-prone process. In... 详细信息
来源: 评论
iWavePro: An improved framework for iWave++
iWavePro: An improved framework for iWave++
收藏 引用
IEEE International Symposium on Circuits and systems (ISCAS)
作者: Dongmei Xue Cunhui Dong Fan Ye Hang Chen Bowei Kang Li Li Dong Liu CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System University of Science and Technology of China Hefei China
End-to-end image coding methods based on wavelet-like transform have made great progress in recent years. The most advanced one is iWave++, which adopts multi-level lifting schemes based on convolutional neural networ...
来源: 评论
Multiscale Progressive Image Compression Network Guided by Learnable Just Noticeable Distortion
Multiscale Progressive Image Compression Network Guided by L...
收藏 引用
IEEE Visual Communications and Image processing (VCIP)
作者: Xin Jin Runchun Ye Zhibo Chen CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System University of Science and Technology of China Hefei China
One key challenge to the learning-based image compression is that adaptive bit allocation is crucial for compression effectiveness but can hardly be trained into a neural network. Hereby, in this work, We presents an ... 详细信息
来源: 评论