咨询与建议

限定检索结果

文献类型

  • 44 篇 期刊文献
  • 43 篇 会议
  • 1 册 图书

馆藏范围

  • 88 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 39 篇 计算机科学与技术...
    • 34 篇 软件工程
    • 22 篇 生物医学工程(可授...
    • 18 篇 信息与通信工程
    • 18 篇 生物工程
    • 11 篇 光学工程
    • 10 篇 核科学与技术
    • 7 篇 化学工程与技术
    • 6 篇 电气工程
    • 6 篇 控制科学与工程
    • 4 篇 建筑学
    • 3 篇 仪器科学与技术
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 交通运输工程
  • 58 篇 理学
    • 25 篇 数学
    • 18 篇 生物学
    • 15 篇 物理学
    • 8 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地球物理学
    • 2 篇 系统科学
  • 20 篇 管理学
    • 14 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 19 篇 医学
    • 18 篇 基础医学(可授医学...
    • 18 篇 临床医学
    • 16 篇 药学(可授医学、理...
    • 3 篇 公共卫生与预防医...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 教育学

主题

  • 7 篇 image classifica...
  • 4 篇 coloring
  • 4 篇 image segmentati...
  • 3 篇 computer science
  • 3 篇 nuclear medicine
  • 3 篇 diseases
  • 3 篇 convolutional ne...
  • 3 篇 color
  • 2 篇 deep learning
  • 2 篇 genetic algorith...
  • 2 篇 single photon em...
  • 2 篇 artificial intel...
  • 2 篇 bones
  • 1 篇 corona
  • 1 篇 open circuit vol...
  • 1 篇 secret sharing
  • 1 篇 prompt engineeri...
  • 1 篇 cargo ship trans...
  • 1 篇 lesions
  • 1 篇 collaborative fi...

机构

  • 16 篇 school of mathem...
  • 15 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 school of mathem...
  • 4 篇 fujian collabora...
  • 4 篇 key laboratory o...
  • 4 篇 school of mathem...
  • 4 篇 key laboratory o...
  • 4 篇 fujian provincia...
  • 3 篇 school of mathem...
  • 3 篇 peking universit...
  • 3 篇 national enginee...
  • 3 篇 school of mathem...
  • 3 篇 key laboratory o...
  • 3 篇 key laboratory o...
  • 3 篇 key laboratory o...
  • 3 篇 center for data ...
  • 3 篇 key laboratory o...
  • 3 篇 northwest for mi...

作者

  • 15 篇 lin qiang
  • 11 篇 cao yongchun
  • 10 篇 qiang lin
  • 10 篇 man zhengxing
  • 9 篇 tian shuangliang
  • 7 篇 yongchun cao
  • 6 篇 deng tao
  • 5 篇 zhengxing man
  • 5 篇 huang mengge
  • 4 篇 cao kai
  • 4 篇 lu qiqi
  • 4 篇 tao deng
  • 4 篇 shuangliang tian
  • 4 篇 peng lizhen
  • 4 篇 zhang jingyi
  • 3 篇 chen xiaoyan
  • 3 篇 an zhuomo
  • 3 篇 ding weiping
  • 3 篇 cai jin
  • 3 篇 jingyi zhang

语言

  • 81 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Key Laboratory of Streaming Data Computing and Applications"
88 条 记 录,以下是61-70 订阅
排序:
Partial-order Algorithm of Model Checking in µ-Predicate Ambient Logic
收藏 引用
Journal of Computers (Taiwan) 2018年 第5期29卷 142-159页
作者: Jiang, Hua Lin, Rong-De Zou, Fu-Min Li, Ling-Xiang Key Lab of Granular Computing Minnan Normal University ZhangZhou China School of Mathematical Science Huaqiao university QuanZhou China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fuzhou Fujian350008 China School of Electronics and Information Engineering Hunan University of Science and Engineering Yongzhou425199 China
This paper introduces a kind of partial-order algorithm of model-checking in finite-control mobile ambients against μ-predicate ambient logic(Ambient logic based on first-order μ-calculus). Based on Tarski's fix... 详细信息
来源: 评论
Achieving High Open-Circuit Voltage in Efficient Kesterite Solar Cells Via Lanthanide Europium Ion Induced Carrier Lifetime Enhancement
SSRN
收藏 引用
SSRN 2024年
作者: Chen, Xingye Zhao, Yunhai Ahmad, Nafees Zhao, Jun Zheng, Zhuanghao Su, Zhenghua Peng, Xiaogang Li, Xuejin Zhang, Xianghua Fan, Ping Liang, Guangxing Chen, Shuo Shenzhen Key Laboratory of Advanced Thin Films and Applications Key Laboratory of Optoelectronic Devices and Systems Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China UMR 6226 Université de Rennes Rennes F-35000 France Shenzhen518060 China
Short carrier lifetimes is a key challenge limiting the open-circuit voltage (VOC) and power conversion efficiency (PCE) of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. In this work, for the first time, lanthanide e... 详细信息
来源: 评论
Incremental Cognitive Learning Approach Based on Concept Reduction
SSRN
收藏 引用
SSRN 2024年
作者: Liang, Taoju Lin, Yidong Li, Jinjin Wang, Qijun School of Mathematics and Statistics Minnan Normal University Zhangzhou363000 China Institute of Meteorological Big Data-Digital Fujian Minnan Normal University Zhangzhou363000 China Fujian Key Laboratory of Granular Computing and Applications Minnan Normal University Zhangzhou363000 China
Concept-cognitive learning (CCL) offers an innovative approach to classification, and concept reduction serves as a powerful method for compressing data. Nonetheless, most existing CCLs tend to incur information loss ... 详细信息
来源: 评论
On Star Coloring of Several Corona Graphs
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1738卷
作者: Jin Cai Shuangliang Tian Zhuomo An School of Mathematics and Computer Science Northwest for Minzu University Lanzhou 730030 China Key Laboratory of Streaming Data Computing Technologies and Applications Northwest Minzu University Lanzhou 730030 China
Let G be a simple graph with vertex set V(G) and edge set E(G). A vertex coloring of G is called a star coloring of G if any of the paths of 4 order are bicolored. The minimum number of colors required for a star colo...
来源: 评论
Machine learning for modelling unstructured grid data in computational physics: a review
arXiv
收藏 引用
arXiv 2025年
作者: Cheng, Sibo Bocquet, Marc Ding, Weiping Finn, Tobias Sebastian Fu, Rui Fu, Jinlong Guo, Yike Johnson, Eleda Li, Siyi Liu, Che Moro, Eric Newton Pan, Jie Piggott, Matthew Quilodran, Cesar Sharma, Prakhar Wang, Kun Xiao, Dunhui Xue, Xiao Zeng, Yong Zhang, Mingrui Zhou, Hao Zhu, Kewei Arcucci, Rossella CEREA ENPC EDF R&D Institut Polytechnique de Paris Île-de-France France School of Artificial Intelligence and Computer Science Nantong University Jiangsu Nantong226019 China School of Mathematical Sciences Key Laboratory of Intelligent Computing and Applications Tongji University Shanghai200092 China School of Engineering and Materials Science Faculty of Science and Engineering Queen Mary University of London LondonE1 4NS United Kingdom Zienkiewicz Centre for Modelling Data and AI Faculty of Science and Engineering Swansea University SwanseaSA1 8EN United Kingdom Department of Computer Science and Engineering Hong Kong university of science and technology Hong Kong Department of Earth Science & Engineering Imperial College London LondonSW7 2AZ United Kingdom Tianjin Key Laboratory of Imaging and Sensing Microelectronics Technology School of Microelectronics Tianjin University Tianjin300072 China Centre for Health Informatics Cumming School of Medicine University of Calgary CalgaryABT2N 1N4 Canada Department of Community Health Sciences Cumming School of Medicine University of Calgary CalgaryABT2N 1N4 Canada Undaunted Grantham Institute for Climate Change and the Environment Imperial College London LondonSW7 2AZ United Kingdom Culham Campus AbingdonOX14 3DB United Kingdom Centre for Computational Science Department of Chemistry University College London LondonWC1E 6BT United Kingdom Concordia Institute for Information Systems Engineering Concordia University MontrealQCH3G 1M8 Canada School of Mechanical Medical and Process Engineering Faculty of Engineering Queensland University of Technology BrisbaneQLD Australia Department of Chemical Engineering University College London LondonWC1E 6BT United Kingdom
Unstructured grid data are essential for modelling complex geometries and dynamics in computational physics. Yet, their inherent irregularity presents significant challenges for conventional machine learning (ML) tech... 详细信息
来源: 评论
EmT: A Novel Transformer for Generalized Cross-subject EEG Emotion Recognition
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Yi Tong, Chengxuan Zhang, Shuailei Jiang, Muyun Li, Yong Liang, Kevin Lim Jun Guan, Cuntai College of Computing and Data Science Nanyang Technological University 50 Nanyang Avenue Singapore639798 Singapore Wilmar International Singapore School of Computer Science and Engineering Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications Southeast University Nanjing210096 China
Integrating prior knowledge of neurophysiology into neural network architecture enhances the performance of emotion decoding. While numerous techniques emphasize learning spatial and short-term temporal patterns, ther... 详细信息
来源: 评论
Path ω-automaton
收藏 引用
Journal of Information Hiding and Multimedia Signal Processing 2017年 第3期8卷 640-648页
作者: Jiang, Hua Zou, Fumin Lin, Rongde Li, Lingxiang Key Lab of Granular Computing Minnan Normal University ZhangzhouFujian China Beidou Navigation and Smart Traffic Innovation Center of Fujian Province FuzhouFujian China School of Mathematical Science Huaqiao university QuanzhouFujian China Fujian Provincial Key Laboratory of Big Data Mining and Applications FuzhouFujian China School of Electronics and Information Engineering Hunan University of Science and Engineering YongzhouHunan China
Automata theory is an important branch of theoretical computer science. ω-automaton is an important part of automata theory. The judgment standard for the equivalence of two automata is the equivalence of their accep... 详细信息
来源: 评论
A fine-grained perspective on the robustness of global cargo ship transportation networks
收藏 引用
Journal of Geographical Sciences 2018年 第7期28卷 881-899页
作者: 彭澎 程诗奋 陈金海 廖梦迪 吴琳 刘希亮 陆锋 State Key Laboratory of Resources and Environmental Information System Institute of Geographic Sciences and Natural Resources Research CAS University of Chinese Academy of Sciences Navigation Aids Technology Research Center of Jimei University National & Local Joint Engineering Research Center for Marine Navigation Aids Services College of Geomatics Shandong University of Science and Technology Institute of Computing Technology CAS Fujian Collaborative Innovation Center for Big Data Applications in Governments Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application
The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while... 详细信息
来源: 评论
An efficient aggregate signature scheme for healthcare wireless sensor networks
Journal of Network Intelligence
收藏 引用
Journal of Network Intelligence 2021年 第1期6卷 1-15页
作者: Chen, Jian-Neng Zhou, Yu-Ping Huang, Zhen-Jie Wu, Tsu-Yang Zou, Fu-Min Tso, Raylin Minnan Normal University Zhangzhou363000 China Key Laboratory of Data Science and Intelligence Application Zhangzhou363000 China Lab of Granular Computing Zhangzhou363000 China College of Computer Science and Engineering Shandong University of Science and Technology Qingdao266590 China Fujian Key Laboratory of Automotive Electronics and Electric Drive Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology National Demonstration Center for Experimental Electronic Information and Electrical Technology Education Fujian University of Technology Fuzhou350008 China Department of Computer Science National Chengchi University Taipei Taiwan
In healthcare wireless sensor networks, there are a large number of sensors, which need to transmit a lot of information in real time. The aggregate signature scheme combines a great deal of signatures signed by diffe... 详细信息
来源: 评论
Ascl: Accelerating Semi-Supervised Learning Via Contrastive Learning
SSRN
收藏 引用
SSRN 2024年
作者: Liu, Haixiong Li, Zuoyong Wu, Jiawei Zeng, Kun Hu, Rong Zeng, Wei Fujian Provincial Key Laboratory of Big Data Mining and Applications School of Computer Science and Mathematics Fujian University of Technology Fuzhou350118 China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control College of Computer and Data Science Minjiang University Fuzhou350121 China School of Intelligent Systems Engineering Shenzhen Campus of Sun Yat-sen University Guangdong Shenzhen518107 China The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions Wuyi University Wuyishan354300 China School of Physics and Mechanical and Electrical Engineering Longyan University Longyan364012 China
SSL(Semi-supervised learning) is widely used in machine learning, which leverages labeled and unlabeled data to improve model performance. SSL aims to optimize class mutual information, but noisy pseudo-labels introdu... 详细信息
来源: 评论