咨询与建议

限定检索结果

文献类型

  • 587 篇 期刊文献
  • 563 篇 会议

馆藏范围

  • 1,150 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 813 篇 工学
    • 653 篇 计算机科学与技术...
    • 570 篇 软件工程
    • 173 篇 信息与通信工程
    • 92 篇 控制科学与工程
    • 86 篇 生物工程
    • 73 篇 生物医学工程(可授...
    • 54 篇 化学工程与技术
    • 53 篇 机械工程
    • 49 篇 电子科学与技术(可...
    • 44 篇 电气工程
    • 40 篇 光学工程
    • 21 篇 仪器科学与技术
    • 21 篇 交通运输工程
    • 21 篇 航空宇航科学与技...
    • 19 篇 土木工程
    • 14 篇 建筑学
    • 13 篇 动力工程及工程热...
  • 463 篇 理学
    • 329 篇 数学
    • 105 篇 生物学
    • 78 篇 统计学(可授理学、...
    • 58 篇 物理学
    • 55 篇 化学
    • 32 篇 系统科学
  • 277 篇 管理学
    • 143 篇 管理科学与工程(可...
    • 140 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 47 篇 医学
    • 39 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 27 篇 药学(可授医学、理...
  • 18 篇 农学
  • 16 篇 法学
    • 14 篇 社会学
  • 7 篇 经济学
  • 4 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 2 篇 军事学
  • 1 篇 哲学

主题

  • 65 篇 computer science
  • 59 篇 educational inst...
  • 53 篇 laboratories
  • 52 篇 knowledge engine...
  • 50 篇 educational tech...
  • 40 篇 data mining
  • 28 篇 computer science...
  • 26 篇 semantics
  • 25 篇 ontology
  • 20 篇 image segmentati...
  • 17 篇 deep learning
  • 17 篇 genetic algorith...
  • 17 篇 feature extracti...
  • 15 篇 reinforcement le...
  • 15 篇 ontologies
  • 15 篇 clustering algor...
  • 15 篇 artificial intel...
  • 13 篇 support vector m...
  • 13 篇 topology
  • 12 篇 neural networks

机构

  • 488 篇 college of compu...
  • 272 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 43 篇 college of softw...
  • 41 篇 key laboratory o...
  • 38 篇 school of artifi...
  • 35 篇 key laboratory o...
  • 32 篇 college of compu...
  • 29 篇 key laboratory o...
  • 23 篇 jilin university...
  • 21 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 17 篇 department of co...
  • 17 篇 key laboratory o...
  • 16 篇 jilin university...
  • 16 篇 school of comput...
  • 15 篇 key laboratory o...
  • 15 篇 the college of c...
  • 15 篇 key laboratory o...

作者

  • 41 篇 yang bo
  • 37 篇 liang yanchun
  • 34 篇 sun geng
  • 32 篇 li xiongfei
  • 31 篇 ouyang dantong
  • 30 篇 dantong ouyang
  • 28 篇 li ximing
  • 27 篇 liu dayou
  • 27 篇 ouyang jihong
  • 27 篇 yanchun liang
  • 26 篇 zuo wanli
  • 25 篇 bo yang
  • 24 篇 liu yanheng
  • 23 篇 niyato dusit
  • 22 篇 yanheng liu
  • 21 篇 li jiahui
  • 20 篇 guan renchu
  • 20 篇 huang lan
  • 20 篇 da-you liu
  • 19 篇 dayou liu

语言

  • 1,053 篇 英文
  • 50 篇 中文
  • 47 篇 其他
检索条件"机构=Key Laboratory of Symbol Computation and Knowledge Engineering"
1150 条 记 录,以下是61-70 订阅
An Enhanced Approach for Few-Shot Segmentation Via Smooth Downsampling Mask and Label Smoothing Loss
SSRN
收藏 引用
SSRN 2023年
作者: Jin, Hailong Li, Huiying College of Computer Science and Technology Jilin Province Changchun China Key Laboratory of Symbol Computation and Knowledge Engineering Jilin University Changchun130012 China
Few-shot semantic segmentation aims to segment new categories with only a small number of annotated images. Previous methods mainly focused on exploiting the pixel-level correlation between the support image and the q... 详细信息
来源: 评论
Learning Stable Task-Level Manifold for Few-Shot Learning
Learning Stable Task-Level Manifold for Few-Shot Learning
收藏 引用
2023 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2023
作者: Yu, Siyi Luo, Wei Li, Gang Yang, Bo Jilin University College of Computer Science and Technology China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education China Deakin University School of Information Technology Geelong Australia
Few-shot learning (FSL) aims to learn to new concepts based on very limited data. One of the main challenges in FSL is the use of pretrained embeddings whose dimension is too high for the small sample size. While the ... 详细信息
来源: 评论
Positive and Unlabeled Learning with Controlled Probability Boundary Fence  41
Positive and Unlabeled Learning with Controlled Probability ...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Li, Changchun Dai, Yuanchao Feng, Lei Li, Ximing Wang, Bing Ouyang, Jihong College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Information Systems Technology and Design Pillar Singapore University of Technology and Design Singapore
Positive and Unlabeled (PU) learning refers to a special case of binary classification, and technically, it aims to induce a binary classifier from a few labeled positive training instances and loads of unlabeled inst... 详细信息
来源: 评论
Nutrition feature basis of food classification in traditional chinese medicine  7
Nutrition feature basis of food classification in traditiona...
收藏 引用
7th International Conference on Big Data Computing and Communications, BigCom 2021
作者: Zhao, Fucheng Han, Xiaosong Zhang, Yikun Niu, Peiyu Cheng, Jun Yi, Wan Jilin University Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry College of Computer Science and Technology Changchun130012 China
In TCM (Traditional Chinese Medicine) theory, the cold-and-hot property of food is considered as an important information to guide people's daily diet and keep them healthy. But the classification of this property... 详细信息
来源: 评论
A novel graph oversampling framework for node classification in class-imbalanced graphs
收藏 引用
Science China(Information Sciences) 2024年 第6期67卷 214-229页
作者: Riting XIA Chunxu ZHANG Yan ZHANG Xueyan LIU Bo YANG Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University College of Artificial Intelligence Jilin University College of Computer Science and Technology Jilin University College of Communication Engineering Jilin University
Graph neural network(GNN) is a promising method to analyze graphs. Most existing GNNs adopt the class-balanced assumption, which cannot deal with class-imbalanced graphs well. The oversampling technique is effective i... 详细信息
来源: 评论
An image segmentation fusion algorithm based on density peak clustering and Markov random field
收藏 引用
Multimedia Tools and Applications 2024年 第37期83卷 85331-85355页
作者: Feng, Yuncong Liu, Wanru Zhang, Xiaoli Zhu, Xiaoyan College of Computer Science and Engineering Changchun University of Technology Jilin Changchun130012 China Artificial Intelligence Research Institute Changchun University of Technology Jilin Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Jilin Changchun130012 China College of Computer Science and Technology Jilin University Jilin Changchun130012 China
Image segmentation is a crucial task in the field of computer vision. Markov random fields (MRF) based image segmentation method can effectively capture intricate relationships among pixels. However, MRF typically req... 详细信息
来源: 评论
2.5D ASF-UNet: Adjacent Slice Spatial Feature Fusion Model for WMH Segmentation from 3D MR Brain Image
2.5D ASF-UNet: Adjacent Slice Spatial Feature Fusion Model f...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Lan Huang Yinglu Sun Ziqi Zhao Chunjie Guo Yan Wang Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education College of Computer Science and Technology Jilin University Changchun China Department of Radiology the First Hospital of Jilin University Changchun China
Segmenting brain white matter hyperintensities (WMH) from 3D Magnetic Resonance (MR) images is crucial for the diagnosis, treatment, and prognosis of Multiple Sclerosis (MS). Unlike common 2D images, this task is more... 详细信息
来源: 评论
A Driving Area Detection Algorithm Based on Swin Transformer  5
A Driving Area Detection Algorithm Based on Swin Transformer
收藏 引用
5th International Conference on Frontiers Technology of Information and Computer, ICFTIC 2023
作者: Liu, Shuang Li, Ying Jilin University College of Computer Science and Technology Jilin Changchun130012 China Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin Changchun130012 China
The detection of drivable areas holds immense significance within the perception system of autonomous vehicles. This capability enables intelligent vehicles to gain a comprehensive understanding of the current road co... 详细信息
来源: 评论
Spatiotemporal Transformer for Data Inference and Long Prediction in Sparse Mobile CrowdSensing  42
Spatiotemporal Transformer for Data Inference and Long Predi...
收藏 引用
42nd IEEE International Conference on Computer Communications, INFOCOM 2023
作者: Wang, En Liu, Weiting Liu, Wenbin Xiang, Chaocan Yang, Bo Yang, Yongjian Jilin University College of Computer Science and Technology China Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education China Chongqing University College of Computer Science China
Mobile CrowdSensing (MCS) is a data sensing paradigm that recruits users carrying mobile terminals to collect data. As its variant, Sparse MCS has been further proposed for large-scale and fine-grained sensing task wi... 详细信息
来源: 评论
Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks  25
Dual-level Mixup for Graph Few-shot Learning with Fewer Task...
收藏 引用
34th ACM Web Conference, WWW 2025
作者: Liu, Yonghao Li, Mengyu Giunchiglia, Fausto Huang, Lan Li, Ximing Feng, Xiaoyue Guan, Renchu College of Computer Science and Technology Jilin University Changchun China Department of Information Engineering and Computer Science University of Trento Trento Italy Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education China
Graph neural networks have been demonstrated as a powerful paradigm for effectively learning graph-structured data on the web and mining content from it. Current leading graph models require a large number of labeled ... 详细信息
来源: 评论