咨询与建议

限定检索结果

文献类型

  • 472 篇 期刊文献
  • 420 篇 会议

馆藏范围

  • 892 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 626 篇 工学
    • 499 篇 计算机科学与技术...
    • 430 篇 软件工程
    • 143 篇 信息与通信工程
    • 73 篇 控制科学与工程
    • 68 篇 生物工程
    • 46 篇 生物医学工程(可授...
    • 43 篇 机械工程
    • 40 篇 电子科学与技术(可...
    • 38 篇 化学工程与技术
    • 37 篇 电气工程
    • 33 篇 光学工程
    • 22 篇 航空宇航科学与技...
    • 18 篇 仪器科学与技术
    • 18 篇 交通运输工程
    • 14 篇 土木工程
    • 13 篇 动力工程及工程热...
    • 10 篇 网络空间安全
  • 341 篇 理学
    • 240 篇 数学
    • 78 篇 生物学
    • 58 篇 统计学(可授理学、...
    • 44 篇 物理学
    • 38 篇 化学
    • 30 篇 系统科学
  • 216 篇 管理学
    • 111 篇 管理科学与工程(可...
    • 106 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 32 篇 医学
    • 24 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 12 篇 法学
    • 10 篇 社会学
  • 9 篇 农学
  • 5 篇 经济学
  • 4 篇 教育学
  • 4 篇 艺术学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 军事学

主题

  • 49 篇 computer science
  • 41 篇 educational inst...
  • 41 篇 laboratories
  • 39 篇 educational tech...
  • 37 篇 knowledge engine...
  • 23 篇 computer science...
  • 21 篇 data mining
  • 16 篇 semantics
  • 14 篇 reinforcement le...
  • 11 篇 deep learning
  • 11 篇 image segmentati...
  • 11 篇 ontologies
  • 11 篇 artificial intel...
  • 10 篇 authentication
  • 10 篇 feature extracti...
  • 9 篇 recommender syst...
  • 9 篇 topology
  • 9 篇 ontology
  • 8 篇 contrastive lear...
  • 8 篇 computational mo...

机构

  • 424 篇 college of compu...
  • 274 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 42 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 34 篇 college of softw...
  • 34 篇 school of artifi...
  • 32 篇 college of compu...
  • 29 篇 key laboratory o...
  • 24 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 18 篇 school of comput...
  • 17 篇 key laboratory o...
  • 16 篇 jilin university...
  • 15 篇 key laboratory o...
  • 15 篇 the college of c...
  • 14 篇 key laboratory o...
  • 13 篇 college of compu...
  • 13 篇 international ce...

作者

  • 43 篇 yang bo
  • 34 篇 sun geng
  • 28 篇 li ximing
  • 27 篇 ouyang jihong
  • 25 篇 dantong ouyang
  • 25 篇 liu dayou
  • 23 篇 niyato dusit
  • 22 篇 ouyang dantong
  • 22 篇 yanheng liu
  • 21 篇 li jiahui
  • 21 篇 bo yang
  • 21 篇 liu yanheng
  • 19 篇 li xiongfei
  • 18 篇 chen haipeng
  • 18 篇 dayou liu
  • 18 篇 huang lan
  • 17 篇 chang yi
  • 17 篇 wang jian
  • 16 篇 guan renchu
  • 16 篇 wang jiacheng

语言

  • 812 篇 英文
  • 47 篇 其他
  • 33 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computation and Knowledge"
892 条 记 录,以下是361-370 订阅
排序:
Grid Partition and Agglomeration for Bidirectional Hierarchical Clustering  2nd
Grid Partition and Agglomeration for Bidirectional Hierarchi...
收藏 引用
2nd EAI International Conference on Security and Privacy in New Computing Environments, SPNCE 2019
作者: Wu, Lei Chen, Hechang Yu, Xiangchun Chao, Sun Yu, Zhezhou Dou, RuiTing College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Changchun China
Clustering is an important data processing tool, which can be used to reveal the distribution structure of unfamiliar domain data, or as preprocess methods to magnify data object to accelerate subsequent processing or... 详细信息
来源: 评论
Self-Ensembling Semi-Supervised Model for Bone X-ray Images Landmark Detection
Self-Ensembling Semi-Supervised Model for Bone X-ray Images ...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Tian Bai Shenyao Liu Yuzhao Wang Yu Wang Dong Dong College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun China College of Software Jilin University Changchun China First hospital of Jilin University Changchun China
Bone image landmark detection plays a vital role in orthopedic diseases diagnosis and analysis. As a promising approach, the data-driven convolutional neural network has been widely applied in landmarks detection. How... 详细信息
来源: 评论
Using prior knowledge to guide BERT's attention in semantic textual matching tasks
arXiv
收藏 引用
arXiv 2021年
作者: Xia, Tingyu Tian, Yuan Wang, Yue Chang, Yi School of Artificial Intelligence Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University China School of Information and Library Science University of North Carolina Chapel Hill United States International Center of Future Science Jilin University China
We study the problem of incorporating prior knowledge into a deep Transformer-based model, i.e., Bidirectional Encoder Representations from Transformers (BERT), to enhance its performance on semantic textual matching ... 详细信息
来源: 评论
Reducing Fault-tolerant Overhead for Distributed Stream Processing with Approximate Backup
Reducing Fault-tolerant Overhead for Distributed Stream Proc...
收藏 引用
International Conference on Computer Communications and Networks (ICCCN)
作者: Yuan Zhuang Xiaohui Wei Hongliang Li Mingkai Hou Yundi Wang College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Changchun China
The stream processing model continuously processes online data in an on-pass fashion that can be more vulnerable to failures than other offline-data processing schemes. Checkpoint-based fault-tolerant methods have bee... 详细信息
来源: 评论
Task replica assignment in mobile self-organized crowdsensing
收藏 引用
International Journal of Performability Engineering 2020年 第1期16卷 152-162页
作者: Wei, Xiaohui Sun, Bingyi Cui, Jiaxu College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun130012 China
In modern society, people carry mobile devices everywhere. However, these mobile devices often stay in an idle status, which leads to wasted resources. Thus, many researchers have sought methods to place tasks on idle... 详细信息
来源: 评论
Understanding the Runtime Overheads of Deep Learning Inference on Edge Devices
Understanding the Runtime Overheads of Deep Learning Inferen...
收藏 引用
IEEE International Conference on Big Data and Cloud Computing (BdCloud)
作者: Xiu Ma Guangli Li Lei Liu Huaxiao Liu Xiaobing Feng College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China SKL of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
With the growing ubiquity of the Internet of Things, in-the-edge inference of deep neural network models has been a major driver for promoting the widespread use of intelligent applications. As model inference charact... 详细信息
来源: 评论
A new SAT Encoding Scheme for Exactly-one Constraints  5
A new SAT Encoding Scheme for Exactly-one Constraints
收藏 引用
5th Annual International Conference on Network and Information Systems for Computers, ICNISC 2019
作者: Cai, Jiatong Su, Yating Yang, Xixi Min, Jionghao Lai, Yong College of Software Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun China
Exactly-one constraints have comprehensive applications for the fields of artificial intelligence and operations research. For many encoded SAT problems generated by the existing encoding schemes of exactly-one constr... 详细信息
来源: 评论
Building a Private Cloud Based on Microservices for Computer Science laboratory in Universities
Building a Private Cloud Based on Microservices for Computer...
收藏 引用
International Conference on Information Science and Control Engineering (ICISCE)
作者: Hao Liu Zhe Wang Lan Huang Kangping Wang School of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University Changchun China
Computer science labs in universities have different demands in cloud computing compared with typical IT companies. They differ greatly in software requirements and resource utilization. As an instance, we propose bui... 详细信息
来源: 评论
Schgt-Im: Influence Maximization for Heterogeneous Networks Based on a Self-Supervised Clustered Heterogeneous Graph Transformer
SSRN
收藏 引用
SSRN 2022年
作者: Li, Ying Li, Linlin Liu, Xiangyu Liu, Yijun Li, Qianqian Key Laboratory of Symbolic Computation and Knowledge Engineering College of Computer Science and Technology Jilin University Jilin Province Changchun130013 China The Faculty of Science and Engineering University of Nottingham NottinghamNG7 2RD United Kingdom Institutes of Science and Development Chinese Academy of Sciences Beijing100190 China School of Public Policy and Management University of Chinese Academy of Sciences Beijing100190 China
Influence maximization (IM) has drawn considerable attention in recent years. Most existing IM methods focus on homogeneous networks, and do not consider the heterogeneity and the attributes of different types of node... 详细信息
来源: 评论
Neural architecture search based on the cartesian genetic programming
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Xuan Zhang, Xiuyi Jia, Linhan Chen, Liang Liang, Yanchun Zhou, You Wu, Chunguo Key Laboratory of Symbolic Computation Knowledge Engineering of Ministry of Education College of Computer Science and Technology Jilin University Changchun130012 China College of Software Jilin University Changchun130012 China School of Computer Science Zhuhai College of Science and Technology Zhuhai519041 China
Neural architecture search (NAS) is a hot topic in the field of automated machine learning and outperforms humans in designing neural architectures on quite a few machine learning tasks. Motivated by the natural repre... 详细信息
来源: 评论