咨询与建议

限定检索结果

文献类型

  • 426 篇 期刊文献
  • 400 篇 会议

馆藏范围

  • 826 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 573 篇 工学
    • 459 篇 计算机科学与技术...
    • 393 篇 软件工程
    • 127 篇 信息与通信工程
    • 70 篇 控制科学与工程
    • 60 篇 生物工程
    • 45 篇 生物医学工程(可授...
    • 41 篇 电子科学与技术(可...
    • 40 篇 机械工程
    • 35 篇 电气工程
    • 33 篇 化学工程与技术
    • 30 篇 光学工程
    • 22 篇 航空宇航科学与技...
    • 17 篇 交通运输工程
    • 16 篇 仪器科学与技术
    • 13 篇 动力工程及工程热...
    • 12 篇 土木工程
  • 302 篇 理学
    • 216 篇 数学
    • 69 篇 生物学
    • 52 篇 统计学(可授理学、...
    • 41 篇 物理学
    • 33 篇 化学
    • 24 篇 系统科学
  • 194 篇 管理学
    • 103 篇 管理科学与工程(可...
    • 90 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 31 篇 医学
    • 23 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 12 篇 法学
    • 10 篇 社会学
  • 9 篇 农学
  • 5 篇 经济学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 军事学

主题

  • 48 篇 computer science
  • 41 篇 educational inst...
  • 39 篇 laboratories
  • 39 篇 educational tech...
  • 36 篇 knowledge engine...
  • 23 篇 computer science...
  • 21 篇 data mining
  • 14 篇 reinforcement le...
  • 13 篇 semantics
  • 12 篇 image segmentati...
  • 12 篇 contrastive lear...
  • 12 篇 feature extracti...
  • 11 篇 ontologies
  • 10 篇 deep learning
  • 10 篇 authentication
  • 9 篇 recommender syst...
  • 9 篇 topology
  • 8 篇 sun
  • 8 篇 computational mo...
  • 8 篇 genetic algorith...

机构

  • 398 篇 college of compu...
  • 285 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 43 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 33 篇 college of softw...
  • 31 篇 college of compu...
  • 24 篇 jilin university...
  • 23 篇 school of artifi...
  • 20 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 16 篇 school of comput...
  • 15 篇 key laboratory o...
  • 14 篇 key laboratory o...
  • 14 篇 college of compu...
  • 14 篇 the college of c...
  • 11 篇 college of softw...
  • 11 篇 key laboratory o...

作者

  • 39 篇 yang bo
  • 35 篇 sun geng
  • 28 篇 li ximing
  • 25 篇 ouyang jihong
  • 24 篇 niyato dusit
  • 23 篇 dantong ouyang
  • 22 篇 yanheng liu
  • 22 篇 li jiahui
  • 21 篇 liu dayou
  • 21 篇 chen haipeng
  • 21 篇 bo yang
  • 20 篇 liu yanheng
  • 20 篇 li xiongfei
  • 19 篇 ouyang dantong
  • 19 篇 huang lan
  • 18 篇 dayou liu
  • 17 篇 guan renchu
  • 17 篇 wang jiacheng
  • 16 篇 wang jian
  • 16 篇 zhang chunxu

语言

  • 749 篇 英文
  • 61 篇 其他
  • 16 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministryof Education"
826 条 记 录,以下是181-190 订阅
排序:
ExplSched: Maximizing Deep Learning Cluster Efficiency for Exploratory Jobs
ExplSched: Maximizing Deep Learning Cluster Efficiency for E...
收藏 引用
IEEE International Conference on Cluster Computing
作者: Hongliang Li Hairui Zhao Zhewen Xu Xiang Li Haixiao Xu College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Changchun China High Performance Computing Center Jilin University China
Resource management for Deep Learning (DL) clusters is essential for system efficiency and model training quality. Existing schedulers provided by DL frameworks are mostly adaptations from traditional HPC clusters and...
来源: 评论
Multi-site MRI classification using Weighted federated learning based on Mixture of Experts domain adaptation
Multi-site MRI classification using Weighted federated learn...
收藏 引用
2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
作者: Bai, Tian Zhang, Yingfang Wang, Yuzhao Qin, Yanguo Zhang, Fa Jilin University College of Computer Science and Technology Changchun China Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Changchun China The Second Hospital of Jilin University The Department of Orthopaedics Changchun China Beijing Institute of Technology School of Medical Technology Beijing China
Deep learning often requires large amounts of data from different institutions. Federated learning, as a distributed training framework, enables multiple participants to collaboratively train models without collecting... 详细信息
来源: 评论
3DSEAVNet: 3D-Squeeze-and-Excitation Networks for Audio-Visual Saliency Prediction
3DSEAVNet: 3D-Squeeze-and-Excitation Networks for Audio-Visu...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Silong Liang Chunxiao Li Naying Cui Minghui Sun Hao Xue College of Software Engineering JiLin University Changchun China College of Computer Science and Technology JiLin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education JiLin University Changchun China
Video saliency prediction is an important task in the field of computer vision. Most of the existing video saliency prediction methods only focus on image information, and the audio information is often ignored. This ...
来源: 评论
Scalable Precise computation of Shannon Entropy
arXiv
收藏 引用
arXiv 2025年
作者: Lai, Yong Tong, Haolong Xu, Zhenghang Yin, Minghao College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun130012 China School of Computer Science and Information Technology Northeast Normal University Changchun130017 China
Quantitative information flow analyses (QIF) are a class of techniques for measuring the amount of confidential information leaked by a program to its public outputs. Shannon entropy is an important method to quantify... 详细信息
来源: 评论
A Re-Parametrization-Based Bayesian Differential Analysis Algorithm for Gene Regulatory Networks Modeled with Structural Equation Models
收藏 引用
Computer Modeling in engineering & Sciences 2020年 第7期124卷 303-313页
作者: Yan Li Dayou Liu Yungang Zhu Jie Liu College of Computer Science and Technology Jilin UniversityChangchun130012China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin UniversityChangchun130012China
Under different conditions,gene regulatory networks(GRNs)of the same gene set could be similar but *** differential analysis of GRNs under different conditions is important for understanding condition-specific gene re... 详细信息
来源: 评论
Todo: Task Offloading Decision Optimizer for the Efficient Provision of Offloading Schemes
SSRN
收藏 引用
SSRN 2023年
作者: Chen, Shilin Wang, Xingwang Sun, Yafeng College of Computer Science and Technology Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China College of Computer Science and Technology Jilin University Changchun130012 China
As the volume of data stored on local devices increases, users turn to edge devices to help with processing tasks. Developing offloading schemes is challenging due to the varying configurations of edge devices and use... 详细信息
来源: 评论
Closed Loop Networks for Open-Set Semi-Supervised Learning
SSRN
收藏 引用
SSRN 2023年
作者: Ouyang, Jihong Meng, Qingyi Li, Ximing Zhang, Zhengjie Li, Changchun Wang, Wenting College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University China Department of Computer Science University of Texas Dallas United States
Open-Set Semi-Supervised Learning (OS-SSL) refers to the task of learning classifiers with labeled and unlabeled instances, but the unlabeled data may contain the instances associated with unseen labels, dubbed as Out... 详细信息
来源: 评论
Task-Oriented Multi-Modal Mutual Learning for Vision-Language Models
Task-Oriented Multi-Modal Mutual Learning for Vision-Languag...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Sifan Long Zhen Zhao Junkun Yuan Zichang Tan Jiangjiang Liu Luping Zhou Shengsheng Wang Jingdong Wang College of Computer Science and Technology Jilin University Jilin China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Jilin China Baidu VIS University of Sydney Zhejiang University
Prompt learning has become one of the most efficient paradigms for adapting large pre-trained vision-language models to downstream tasks. Current state-of-the-art methods, like CoOp and ProDA, tend to adopt soft promp...
来源: 评论
Learning Group-Disentangled Representation for Interpretable Thoracic Pathologic Prediction
Learning Group-Disentangled Representation for Interpretable...
收藏 引用
2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
作者: Li, Hao Wu, Yirui Hu, Hexuan Lu, Hu Lai, Yong Wan, Shaohua Hohai University Key Laboratory of Water Big Data Technology of Ministry of Water Resources China College of Computer and Information Hohai University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China School of Computer Science and Communication Engineering Jiangsu University China Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China China
Deep learning methods have shown significant performance in medical image analysis tasks. However, they generally act like 'black box' without explanations in both feature extraction and decision processes, le... 详细信息
来源: 评论
IoT Device Identification via A Bio-Inspired Feature Selection Approach
IoT Device Identification via A Bio-Inspired Feature Selecti...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Boxiong Wang Hui Kang Geng Sun Jiahui Li College of Software Jilin University Changchun China College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun China
The rapid development of the Internet-of-Things (IoT) also brings security and other problems. Device identification is a crucial tool for IoT security issues, which can detect and prevent cyber-attacks. Feature selec...
来源: 评论