咨询与建议

限定检索结果

文献类型

  • 426 篇 期刊文献
  • 400 篇 会议

馆藏范围

  • 826 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 573 篇 工学
    • 459 篇 计算机科学与技术...
    • 393 篇 软件工程
    • 127 篇 信息与通信工程
    • 70 篇 控制科学与工程
    • 60 篇 生物工程
    • 45 篇 生物医学工程(可授...
    • 41 篇 电子科学与技术(可...
    • 40 篇 机械工程
    • 35 篇 电气工程
    • 33 篇 化学工程与技术
    • 30 篇 光学工程
    • 22 篇 航空宇航科学与技...
    • 17 篇 交通运输工程
    • 16 篇 仪器科学与技术
    • 13 篇 动力工程及工程热...
    • 12 篇 土木工程
  • 302 篇 理学
    • 216 篇 数学
    • 69 篇 生物学
    • 52 篇 统计学(可授理学、...
    • 41 篇 物理学
    • 33 篇 化学
    • 24 篇 系统科学
  • 194 篇 管理学
    • 103 篇 管理科学与工程(可...
    • 90 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 31 篇 医学
    • 23 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 12 篇 法学
    • 10 篇 社会学
  • 9 篇 农学
  • 5 篇 经济学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 军事学

主题

  • 48 篇 computer science
  • 41 篇 educational inst...
  • 39 篇 laboratories
  • 39 篇 educational tech...
  • 36 篇 knowledge engine...
  • 23 篇 computer science...
  • 21 篇 data mining
  • 14 篇 reinforcement le...
  • 13 篇 semantics
  • 12 篇 image segmentati...
  • 12 篇 contrastive lear...
  • 12 篇 feature extracti...
  • 11 篇 ontologies
  • 10 篇 deep learning
  • 10 篇 authentication
  • 9 篇 recommender syst...
  • 9 篇 topology
  • 8 篇 sun
  • 8 篇 computational mo...
  • 8 篇 genetic algorith...

机构

  • 398 篇 college of compu...
  • 285 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 43 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 33 篇 college of softw...
  • 31 篇 college of compu...
  • 24 篇 jilin university...
  • 23 篇 school of artifi...
  • 20 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 16 篇 school of comput...
  • 15 篇 key laboratory o...
  • 14 篇 key laboratory o...
  • 14 篇 college of compu...
  • 14 篇 the college of c...
  • 11 篇 college of softw...
  • 11 篇 key laboratory o...

作者

  • 39 篇 yang bo
  • 35 篇 sun geng
  • 28 篇 li ximing
  • 25 篇 ouyang jihong
  • 24 篇 niyato dusit
  • 23 篇 dantong ouyang
  • 22 篇 yanheng liu
  • 22 篇 li jiahui
  • 21 篇 liu dayou
  • 21 篇 chen haipeng
  • 21 篇 bo yang
  • 20 篇 liu yanheng
  • 20 篇 li xiongfei
  • 19 篇 ouyang dantong
  • 19 篇 huang lan
  • 18 篇 dayou liu
  • 17 篇 guan renchu
  • 17 篇 wang jiacheng
  • 16 篇 wang jian
  • 16 篇 zhang chunxu

语言

  • 749 篇 英文
  • 61 篇 其他
  • 16 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministryof Education"
826 条 记 录,以下是281-290 订阅
排序:
Spirit distillation: A model compression method with multi-domain knowledge transfer
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Zhiyuan Jiang, Yu Zhao, Minghao Cui, Chupeng Yang, Zongmin Xue, Xinhui Qi, Hong College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation Knowledge Engineering of Ministry of Education Jilin University Changchun China
Recent applications pose requirements of both cross-domain knowledge transfer and model compression to machine learning models due to insufficient training data and limited computational resources. In this paper, we p... 详细信息
来源: 评论
Talking Head Generation for Media Interaction System with Feature Disentanglement
Talking Head Generation for Media Interaction System with Fe...
收藏 引用
International Conference on Parallel and Distributed Systems (ICPADS)
作者: Lei Zhang Qingyang Chen Zhilei Liu College of Intelligence and Computing School of New Media and Communication Tianjin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun P.R. China State Key Laboratory for Novel Software Technology Nanjing University P.R. China School of New Media and Communication Tianjin University Tianjin China College of Intelligence and Computing Tianjin University Tianjin China
The task of talking head generation for the media interaction system is to take images and audio clips of the target face as input, and generate a realistic video of the target synchronized with the audio. Most of the... 详细信息
来源: 评论
Multi-focus image fusion based on fully convolutional networks
收藏 引用
Frontiers of Information Technology & Electronic engineering 2020年 第7期21卷 1019-1033页
作者: Rui GUO Xuan-jing SHEN Xiao-yu DONG Xiao-li ZHANG Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin UniversityChangchun 130012China College of Computer Science and Technology Jilin UniversityChangchun 130012China
We propose a multi-focus image fusion method, in which a fully convolutional network for focus detection(FD-FCN) is constructed. To obtain more precise focus detection maps, we propose to add skip layers in the networ... 详细信息
来源: 评论
Bounding-box deep calibration for high performance face detection
arXiv
收藏 引用
arXiv 2021年
作者: Luo, Shi Li, Xiongfei Zhang, Xiaoli College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China
Modern convolutional neural networks (CNNs)‐based face detectors have achieved tremendous strides due to large annotated datasets. However, misaligned results with high detection confidence but low localization accur... 详细信息
来源: 评论
Recovering accurate labeling information from partially valid data for effective multi-label learning  29
Recovering accurate labeling information from partially vali...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Li, Ximing Wang, Yang College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation Knowledge Engineering of Ministry of Education Jilin University China Key Laboratory of Knowledge Engineering With Big Data Ministry of Education Hefei University of Technology China School of Computer Sci and Information Engineering Hefei University of Technology China
Partial Multi-label Learning (PML) aims to induce the multi-label predictor from datasets with noisy supervision, where each training instance is associated with several candidate labels but only partially valid. To a... 详细信息
来源: 评论
Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Geng Xiao, Jian Li, Jiahui Wang, Jiacheng Kang, Jiawen Niyato, Dusit Mao, Shiwen College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China affiliated with the College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore School of Computer Science and Engineering Nanyang Technological University Singapore639798 Singapore School of Automation Guangdong University of Technology Guangzhou510641 China Department of Electrical and Computer Engineering Auburn University AuburnAL36849-5201 United States
Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications. However, the limited onboard energy and antenna power of a UAV restrict its communication... 详细信息
来源: 评论
Lightweight Deep Learning for Resource-Constrained Environments: A Survey
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Hou-I Galindo, Marco Xie, Hongxia Wong, Lai-Kuan Shuai, Hong-Han Li, Yung-Yui Cheng, Wen-Huang Department of Electronics and Electrical Engineering National Yang Ming Chiao Tung University Hsinchu300 Taiwan College of Computer Science and Technology Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun130000 China Faculty of Computing and Informatics Multimedia University Cyberjaya63100 Malaysia Hon Hai Research Institute Taipei114 Taiwan Department of Computer Science and Information Engineering National Taiwan University Taipei106 Taiwan
Over the past decade, the dominance of deep learning has prevailed across various domains of artificial intelligence, including natural language processing, computer vision, and biomedical signal processing. While the... 详细信息
来源: 评论
Document-Level Relation Extraction with Entity Type Constraints
SSRN
收藏 引用
SSRN 2024年
作者: Han, Ridong Peng, Tao Zhu, BeiBei Bi, Haijia Han, Jiayu Liu, Lu College of Computer Science and Technology Jilin University Jilin Changchun130012 China College of Software Jilin University Jilin Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin Changchun130012 China College of Computer and Artificial Intelligence Liaoning Normal University Liaoning Dalian116081 China Department of Linguistics University of Washington SeattleWA98195 United States
Long-tail problem and multi-label problem are two commonly encountered challenges in document-level relation extraction task. Current efforts are concerned with enhancing the representations of entity pairs through Tr... 详细信息
来源: 评论
PepLand: A large-scale pre-trained peptide representation model for a comprehensive landscape of both canonical and non-canonical amino acids
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Ruochi Wu, Haoran Xiu, Yuting Li, Kewei Chen, Ningning Wang, Yu Wang, Yan Gao, Xin Zhou, Fengfeng Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Jilin Changchun130012 China School of Artificial Intelligence Jilin University Changchun130012 China Syneron Technology Guangzhou510700 China College of Computer Science and Technology Jilin University Jilin Changchun130012 China Thuwal23955 Saudi Arabia Thuwal23955 Saudi Arabia
In recent years, the scientific community has become increasingly interested on peptides with non-canonical amino acids due to their superior stability and resistance to proteolytic degradation. These peptides present... 详细信息
来源: 评论
When Federated Recommendation Meets Cold-Start Problem: Separating Item Attributes and User Interactions
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Chunxu Zhang, Zijian Long, Guodong Yan, Peng Zhou, Tianyi Yang, Bo College of Computer Science and Technology Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Changchun China College of Computer Science and Technology Jilin University City University of Hong Kong China Australian Artificial Intelligence Institute FEIT University of Technology Sydney Sydney Australia Computer Science and UMIACS University of Maryland Maryland United States
Federated recommendation systems usually trains a global model on the server without direct access to users’ private data on their own devices. However, this separation of the recommendation model and users’ private... 详细信息
来源: 评论