咨询与建议

限定检索结果

文献类型

  • 428 篇 期刊文献
  • 400 篇 会议

馆藏范围

  • 828 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 576 篇 工学
    • 462 篇 计算机科学与技术...
    • 381 篇 软件工程
    • 128 篇 信息与通信工程
    • 82 篇 控制科学与工程
    • 60 篇 生物工程
    • 45 篇 生物医学工程(可授...
    • 41 篇 电子科学与技术(可...
    • 40 篇 机械工程
    • 36 篇 电气工程
    • 33 篇 化学工程与技术
    • 29 篇 光学工程
    • 22 篇 航空宇航科学与技...
    • 17 篇 交通运输工程
    • 16 篇 仪器科学与技术
    • 13 篇 动力工程及工程热...
    • 12 篇 土木工程
  • 300 篇 理学
    • 214 篇 数学
    • 69 篇 生物学
    • 51 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 33 篇 化学
    • 24 篇 系统科学
  • 192 篇 管理学
    • 103 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 31 篇 医学
    • 23 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 12 篇 法学
    • 10 篇 社会学
  • 9 篇 农学
  • 5 篇 经济学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 军事学

主题

  • 48 篇 computer science
  • 41 篇 educational inst...
  • 39 篇 laboratories
  • 39 篇 educational tech...
  • 36 篇 knowledge engine...
  • 23 篇 computer science...
  • 21 篇 data mining
  • 14 篇 reinforcement le...
  • 13 篇 semantics
  • 13 篇 feature extracti...
  • 12 篇 image segmentati...
  • 12 篇 contrastive lear...
  • 11 篇 ontologies
  • 10 篇 deep learning
  • 10 篇 authentication
  • 9 篇 recommender syst...
  • 9 篇 topology
  • 9 篇 training
  • 8 篇 sun
  • 8 篇 computational mo...

机构

  • 399 篇 college of compu...
  • 288 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 43 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 33 篇 college of softw...
  • 31 篇 college of compu...
  • 24 篇 jilin university...
  • 23 篇 school of artifi...
  • 20 篇 jilin university...
  • 19 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 16 篇 school of comput...
  • 15 篇 key laboratory o...
  • 14 篇 key laboratory o...
  • 14 篇 college of compu...
  • 14 篇 the college of c...
  • 11 篇 college of softw...
  • 11 篇 key laboratory o...

作者

  • 39 篇 yang bo
  • 35 篇 sun geng
  • 28 篇 li ximing
  • 25 篇 ouyang jihong
  • 24 篇 niyato dusit
  • 23 篇 dantong ouyang
  • 22 篇 yanheng liu
  • 22 篇 li jiahui
  • 21 篇 liu dayou
  • 21 篇 chen haipeng
  • 21 篇 bo yang
  • 20 篇 liu yanheng
  • 20 篇 li xiongfei
  • 19 篇 ouyang dantong
  • 19 篇 huang lan
  • 18 篇 dayou liu
  • 17 篇 guan renchu
  • 17 篇 wang jiacheng
  • 16 篇 wang jian
  • 16 篇 zhang chunxu

语言

  • 733 篇 英文
  • 79 篇 其他
  • 16 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministryof Education"
828 条 记 录,以下是51-60 订阅
排序:
A novel graph oversampling framework for node classification in class-imbalanced graphs
收藏 引用
Science China(Information Sciences) 2024年 第6期67卷 214-229页
作者: Riting XIA Chunxu ZHANG Yan ZHANG Xueyan LIU Bo YANG Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University College of Artificial Intelligence Jilin University College of Computer Science and Technology Jilin University College of Communication Engineering Jilin University
Graph neural network(GNN) is a promising method to analyze graphs. Most existing GNNs adopt the class-balanced assumption, which cannot deal with class-imbalanced graphs well. The oversampling technique is effective i... 详细信息
来源: 评论
Attribution rollout: a new way to interpret visual transformer
收藏 引用
Journal of Ambient Intelligence and Humanized Computing 2023年 第1期14卷 163-173页
作者: Xu, Li Yan, Xin Ding, Weiyue Liu, Zechao College of Computer Science and Technology Harbin Engineering University Nantong Street Heilongjiang Harbin150001 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Qianjin Street Jilin Changchun130012 China Department of Medicine Harvard Medical School Longwood Avenue BostonMA02115 United States
Transformer-based models are dominating the field of natural language processing and are becoming increasingly popular in the field of computer vision. However, the black box characteristics of transformers seriously ... 详细信息
来源: 评论
Meta-GPS++: Enhancing Graph Meta-Learning with Contrastive Learning and Self-Training
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Yonghao Li, Mengyu Li, Ximing Huang, Lan Giunchiglia, Fausto Liang, Yanchun Feng, Xiaoyue Guan, Renchu Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education College of Computer Science and Technology Jilin University Changchun China University of Trento Trento Italy Zhuhai Laboratory of the Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Zhuhai College of Science and Technology Zhuhai China
Node classification is an essential problem in graph learning. However, many models typically obtain unsatisfactory performance when applied to few-shot scenarios. Some studies have attempted to combine meta-learning ... 详细信息
来源: 评论
Auxiliary Tasks Benefit Skeleton-based Action Recognition
Auxiliary Tasks Benefit Skeleton-based Action Recognition
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yuheng Yang Haipeng Chen College of Computer Science and Technology Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China
Skeleton-based action recognition has long been a fundamental and intriguing problem in machine intelligence. This task is challenging due to pose occlusion and rapid motion, which typically results in incomplete or n... 详细信息
来源: 评论
Structure-Based Uncertainty Estimation for Source-Free Active Domain Adaptation
收藏 引用
IET Computer Vision 2025年 第1期19卷
作者: Ouyang, Jihong Zhang, Zhengjie Meng, Qingyi Chi, Jinjin College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China
Active domain adaptation (active DA) provides an effective solution by selectively labelling a limited number of target samples to significantly enhance adaptation performance. However, existing active DA methods ofte... 详细信息
来源: 评论
Hybrid Parameter Update: Alleviating Imbalance Impacts for Distributed Deep Learning  24
Hybrid Parameter Update: Alleviating Imbalance Impacts for D...
收藏 引用
24th IEEE International Conference on High Performance Computing and Communications, 8th IEEE International Conference on Data Science and Systems, 20th IEEE International Conference on Smart City and 8th IEEE International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application, HPCC/DSS/SmartCity/DependSys 2022
作者: Li, Hongliang Xu, Dong Xu, Zhewen Li, Xiang College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Changchun China
Nowadays, data parallelism has been widely applied to train large datasets on distributed deep learning clusters, but it has suffered from costly global parameter updates at batch barriers. Performance imbalance among... 详细信息
来源: 评论
In-context decision transformer: reinforcement learning via hierarchical chain-of-thought  24
In-context decision transformer: reinforcement learning via ...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Sili Huang Jifeng Hu Hechang Chen Lichao Sun Bo Yang School of Artificial Intelligence and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China School of Artificial Intelligence Jilin University China Lehigh University Bethlehem Pennsylvania Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China
In-context learning is a promising approach for offline reinforcement learning (RL) to handle online tasks, which can be achieved by providing task prompts. Recent works demonstrated that in-context RL could emerge wi...
来源: 评论
Structure-and Logic-Aware Heterogeneous Graph Learning for Recommendation  40
Structure-and Logic-Aware Heterogeneous Graph Learning for R...
收藏 引用
40th IEEE International Conference on Data engineering, ICDE 2024
作者: Li, Anchen Yang, Bo Huo, Huan Hussain, Farookh Khadeer Xu, Guandong College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education China Aalto University Espoo Finland School of Computer Science University of Technology Sydney Sydney Australia Education University of Hong Kong Hong Kong Hong Kong
Recently, there has been a surge in recommendations based on heterogeneous information networks (HINs), attributed to their ability to integrate complex and rich semantics. Despite this advancement, most HIN-based rec... 详细信息
来源: 评论
SMRI: A New Method for siRNA Design for COVID-19 Therapy
收藏 引用
Journal of Computer Science & Technology 2022年 第4期37卷 991-1002页
作者: Meng-Xin Chen Xiao-Dong Zhu Hao Zhang Zhen Liu Yuan-Ning Liu College of Software Jilin UniversityChangchun 130012China Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Jilin UniversityChangchun 130012China College of Computer Science and Technology Jilin UniversityChangchun 130012China Graduate School of Engineering Nagasaki Institute of Applied ScienceNagasaki 851-0193Japan
First discovered in Wuhan, China, SARS-CoV-2 is a highly pathogenic novel coronavirus, which rapidly spreads globally and becomes a pandemic with no vaccine and limited distinctive clinical drugs available till March ... 详细信息
来源: 评论
Semi-supervised Multi-label Learning with Balanced Binary Angular Margin Loss  38
Semi-supervised Multi-label Learning with Balanced Binary An...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Li, Ximing Liang, Silong Li, Changchun Wang, Pengfei Gu, Fangming College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Computer Network Information Center Chinese Academy of Sciences China University of Chinese Academy of Sciences Chinese Academy of Sciences China
Semi-supervised multi-label learning (SSMLL) refers to inducing classifiers using a small number of samples with multiple labels and many unlabeled samples. The prevalent solution of SSMLL involves forming pseudo-labe...
来源: 评论