咨询与建议

限定检索结果

文献类型

  • 467 篇 期刊文献
  • 420 篇 会议

馆藏范围

  • 887 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 621 篇 工学
    • 496 篇 计算机科学与技术...
    • 422 篇 软件工程
    • 135 篇 信息与通信工程
    • 78 篇 控制科学与工程
    • 65 篇 生物工程
    • 46 篇 生物医学工程(可授...
    • 42 篇 机械工程
    • 41 篇 电子科学与技术(可...
    • 36 篇 电气工程
    • 36 篇 化学工程与技术
    • 30 篇 光学工程
    • 21 篇 航空宇航科学与技...
    • 16 篇 仪器科学与技术
    • 16 篇 交通运输工程
    • 13 篇 动力工程及工程热...
    • 12 篇 土木工程
    • 10 篇 网络空间安全
  • 327 篇 理学
    • 233 篇 数学
    • 74 篇 生物学
    • 56 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 36 篇 化学
    • 27 篇 系统科学
  • 213 篇 管理学
    • 111 篇 管理科学与工程(可...
    • 102 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 33 篇 医学
    • 25 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 12 篇 法学
    • 10 篇 社会学
  • 9 篇 农学
  • 5 篇 经济学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 军事学

主题

  • 49 篇 computer science
  • 41 篇 educational inst...
  • 41 篇 laboratories
  • 39 篇 educational tech...
  • 37 篇 knowledge engine...
  • 23 篇 computer science...
  • 21 篇 data mining
  • 16 篇 semantics
  • 15 篇 reinforcement le...
  • 12 篇 image segmentati...
  • 12 篇 contrastive lear...
  • 12 篇 feature extracti...
  • 11 篇 deep learning
  • 11 篇 ontologies
  • 10 篇 authentication
  • 10 篇 artificial intel...
  • 9 篇 recommender syst...
  • 9 篇 topology
  • 8 篇 sun
  • 8 篇 computational mo...

机构

  • 423 篇 college of compu...
  • 284 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 44 篇 key laboratory o...
  • 36 篇 college of softw...
  • 36 篇 key laboratory o...
  • 33 篇 school of artifi...
  • 31 篇 college of compu...
  • 23 篇 key laboratory o...
  • 23 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 school of comput...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 18 篇 jilin university...
  • 15 篇 key laboratory o...
  • 14 篇 key laboratory o...
  • 14 篇 college of compu...
  • 14 篇 the college of c...
  • 13 篇 international ce...

作者

  • 39 篇 yang bo
  • 34 篇 sun geng
  • 31 篇 li ximing
  • 27 篇 ouyang jihong
  • 25 篇 dantong ouyang
  • 23 篇 niyato dusit
  • 22 篇 ouyang dantong
  • 22 篇 liu dayou
  • 22 篇 yanheng liu
  • 22 篇 bo yang
  • 21 篇 chen haipeng
  • 21 篇 huang lan
  • 21 篇 li jiahui
  • 20 篇 liu yanheng
  • 20 篇 li xiongfei
  • 19 篇 guan renchu
  • 18 篇 dayou liu
  • 17 篇 chang yi
  • 16 篇 wang jian
  • 16 篇 zhang chunxu

语言

  • 753 篇 英文
  • 108 篇 其他
  • 27 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computation and Knowledge Engineering of the MoE"
887 条 记 录,以下是101-110 订阅
排序:
Learning generalizable agents via saliency-guided features decorrelation  23
Learning generalizable agents via saliency-guided features d...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Sili Huang Yanchao Sun Jifeng Hu Siyuan Guo Hechang Chen Yi Chang Lichao Sun Bo Yang Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education and School of Artificial Intelligence Jilin University China Department of Computer Science University of Maryland College Park School of Artificial Intelligence Jilin University China Lehigh University Bethlehem Pennsylvania Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education
In visual-based Reinforcement Learning (RL), agents often struggle to generalize well to environmental variations in the state space that were not observed during training. The variations can arise in both task-irrele...
来源: 评论
BA-LORA: BIAS-ALLEVIATING LOW-RANK ADAPTATION TO MITIGATE CATASTROPHIC INHERITANCE IN LARGE LANGUAGE MODELS
arXiv
收藏 引用
arXiv 2024年
作者: Chang, Yupeng Chang, Yi Wu, Yuan School of Artificial Intelligence Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University China International Center of Future Science Jilin University China
Large language models (LLMs) have demonstrated remarkable proficiency across various natural language processing (NLP) tasks. However, adapting LLMs to downstream applications requires computationally intensive and me... 详细信息
来源: 评论
Large Language Model Evaluation via Matrix Nuclear-Norm
arXiv
收藏 引用
arXiv 2024年
作者: Li, Yahan Xia, Tingyu Chang, Yi Wu, Yuan School of Artificial Intelligence Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University China International Center of Future Science Jilin University China
As large language models (LLMs) continue to evolve, efficient evaluation metrics are vital for assessing their ability to compress information and reduce redundancy. While traditional metrics like Matrix Entropy offer... 详细信息
来源: 评论
From Incomplete Coarse-Grained to Complete Fine-Grained: A Two-Stage Framework for Spatiotemporal Data Reconstruction
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Ziyu Su, Haoyang Wang, En Yang, Funing Yang, Yongjian Liu, Wenbin The College of Computer Science and Technology Jilin University Changchun130012 China The Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China
With the rapid development of various sensing devices, spatiotemporal data is becoming increasingly important nowadays. However, due to sensing costs and privacy concerns, the collected data is often incomplete and co... 详细信息
来源: 评论
Reusable Generator Data-Free knowledge Distillation with Hard Loss Simulation for Image Classification
SSRN
收藏 引用
SSRN 2024年
作者: Sun, Yafeng Wang, Xingwang Huang, Junhong Chen, Shilin Hou, Minghui College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China
In many image classification scenarios where knowledge distillation (KD) is applied, multiple users need to train various student models that conform to the device's computational limitations at different times. H... 详细信息
来源: 评论
AWEQ: Post-Training Quantization with Activation-Weight Equalization for Large Language Models
arXiv
收藏 引用
arXiv 2023年
作者: Li, Baisong Wang, Xingwang Xu, Haixiao School of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University China
Large language models(LLMs) excellent performance across a variety of tasks, but they come with significant computational and storage costs. Quantizing these models is an effective way to alleviate this issue. However... 详细信息
来源: 评论
Toward Time-Continuous Data Inference in Sparse Urban CrowdSensing
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Ziyu Su, Haoyang Sun, Hanqi Wang, En Liu, Wenbin The College of Computer Science and Technology Jilin University Changchun130012 China The Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China
Mobile Crowd Sensing (MCS) is a promising paradigm that leverages mobile users and their smart portable devices to perform various real-world tasks. However, due to budget constraints and the inaccessibility of certai... 详细信息
来源: 评论
Learning Interpretable Network Dynamics via Universal Neural symbolic Regression
arXiv
收藏 引用
arXiv 2024年
作者: Hu, Jiao Cui, Jiaxu Yang, Bo College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China
Discovering governing equations of complex network dynamics is a fundamental challenge in contemporary science with rich data, which can uncover the mysterious patterns and mechanisms of the formation and evolution of... 详细信息
来源: 评论
AHMSA-Net: Adaptive Hierarchical Multi-Scale Attention Network for Micro-Expression Recognition
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Lijun Zhang, Yifan Tang, Weicheng Sun, Xinzhi Wang, Xiaomeng Li, Zhanshan College of Computer Science and Technology Jilin University Changchun Jilin130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun Jilin130012 China
Micro-expression recognition (MER) presents a significant challenge due to the transient and subtle nature of the motion changes involved. In recent years, deep learning methods based on attention mechanisms have made... 详细信息
来源: 评论
Enhancing Unsupervised Graph Few-shot Learning via Set Functions and Optimal Transport
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Yonghao Giunchiglia, Fausto Li, Ximing Huang, Lan Feng, Xiaoyue Guan, Renchu College of Computer Science and Technology Jilin University Changchun China Department of Information Engineering and Computer Science University of Trento Trento Italy Key Laboratory of Symbolic Computation and Knowledge Engineering The Ministry of Education China
Graph few-shot learning has garnered significant attention for its ability to rapidly adapt to downstream tasks with limited labeled data, sparking considerable interest among researchers. Recent advancements in graph... 详细信息
来源: 评论