咨询与建议

限定检索结果

文献类型

  • 477 篇 期刊文献
  • 420 篇 会议

馆藏范围

  • 897 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 631 篇 工学
    • 507 篇 计算机科学与技术...
    • 433 篇 软件工程
    • 141 篇 信息与通信工程
    • 78 篇 控制科学与工程
    • 65 篇 生物工程
    • 46 篇 生物医学工程(可授...
    • 42 篇 机械工程
    • 41 篇 电子科学与技术(可...
    • 39 篇 电气工程
    • 36 篇 化学工程与技术
    • 30 篇 光学工程
    • 22 篇 航空宇航科学与技...
    • 17 篇 交通运输工程
    • 16 篇 仪器科学与技术
    • 13 篇 动力工程及工程热...
    • 13 篇 土木工程
    • 11 篇 网络空间安全
  • 333 篇 理学
    • 237 篇 数学
    • 74 篇 生物学
    • 56 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 36 篇 化学
    • 28 篇 系统科学
  • 217 篇 管理学
    • 112 篇 管理科学与工程(可...
    • 106 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 32 篇 医学
    • 24 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 12 篇 法学
    • 10 篇 社会学
  • 9 篇 农学
  • 5 篇 经济学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 军事学

主题

  • 49 篇 computer science
  • 41 篇 educational inst...
  • 41 篇 laboratories
  • 39 篇 educational tech...
  • 37 篇 knowledge engine...
  • 23 篇 computer science...
  • 21 篇 data mining
  • 16 篇 semantics
  • 15 篇 reinforcement le...
  • 12 篇 image segmentati...
  • 12 篇 contrastive lear...
  • 12 篇 feature extracti...
  • 11 篇 deep learning
  • 11 篇 ontologies
  • 11 篇 artificial intel...
  • 10 篇 authentication
  • 9 篇 recommender syst...
  • 9 篇 topology
  • 8 篇 sun
  • 8 篇 computational mo...

机构

  • 431 篇 college of compu...
  • 285 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 43 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 34 篇 college of softw...
  • 33 篇 school of artifi...
  • 31 篇 college of compu...
  • 29 篇 key laboratory o...
  • 24 篇 jilin university...
  • 20 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 17 篇 school of comput...
  • 15 篇 key laboratory o...
  • 15 篇 the college of c...
  • 14 篇 key laboratory o...
  • 14 篇 college of compu...
  • 13 篇 international ce...

作者

  • 39 篇 yang bo
  • 35 篇 sun geng
  • 31 篇 li ximing
  • 27 篇 ouyang jihong
  • 25 篇 dantong ouyang
  • 25 篇 liu dayou
  • 24 篇 niyato dusit
  • 22 篇 ouyang dantong
  • 22 篇 yanheng liu
  • 22 篇 li jiahui
  • 22 篇 bo yang
  • 21 篇 chen haipeng
  • 21 篇 huang lan
  • 21 篇 liu yanheng
  • 20 篇 li xiongfei
  • 19 篇 guan renchu
  • 18 篇 dayou liu
  • 17 篇 chang yi
  • 17 篇 wang jian
  • 17 篇 wang jiacheng

语言

  • 799 篇 英文
  • 63 篇 其他
  • 35 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computation and Knowledge Engineering of the MoE"
897 条 记 录,以下是191-200 订阅
排序:
When Federated Recommendation Meets Cold-Start Problem: Separating Item Attributes and User Interactions  24
When Federated Recommendation Meets Cold-Start Problem: Sepa...
收藏 引用
33rd ACM Web Conference, WWW 2024
作者: Zhang, Chunxu Long, Guodong Zhou, Tianyi Zhang, Zijian Yan, Peng Yang, Bo College of Computer Science and Technology Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China Australian Artificial Intelligence Institute FEIT University of Technology Sydney Sydney Australia Computer Science and Umiacs University of Maryland MD United States College of Computer Science and Technology Jilin University City University of Hong Kong Hong Kong City University of Hong Kong Hong Kong
Federated recommendation system usually trains a global model on the server without direct access to users' private data on their own devices. However, this separation of the recommendation model and users' pr... 详细信息
来源: 评论
Injecting Revenue-awareness into Cold-start Recommendation: The Case of Online Insurance
Injecting Revenue-awareness into Cold-start Recommendation: ...
收藏 引用
International Conference on Parallel and Distributed Systems (ICPADS)
作者: Yu Li Yi Zhang Helen He Chang Qiang Li College of Computer Science and Technology Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University WeSure Inc. Ping An Technology Shenzhen Co. Ltd
In online insurance, one of the central challenges is the cold-starting of new insurance products, which means there are no previous samples to refer to. Previous studies have mainly focused on improving the predictio...
来源: 评论
WGAN-GP_Glu: A semi-supervised model based on double generator-Wasserstein GAN with gradient penalty algorithm for glutarylation site identification
收藏 引用
Computers in Biology and Medicine 2025年 184卷 109328-109328页
作者: Ning, Qiao Qi, Zedong Information Science and Technology Dalian Maritime University Liaoning Dalian China The School of Artificial Intelligence and Computer Science Jiangnan University Wuxi China Neusoft Education Technology Group Dalian China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China
As an important post-translational modification, glutarylation plays a crucial role in a variety of cellular functions. Recently, diverse computational methods for glutarylation site identification have been proposed.... 详细信息
来源: 评论
3DSEAVNet: 3D-Squeeze-and-Excitation Networks for Audio-Visual Saliency Prediction
3DSEAVNet: 3D-Squeeze-and-Excitation Networks for Audio-Visu...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Silong Liang Chunxiao Li Naying Cui Minghui Sun Hao Xue College of Software Engineering JiLin University Changchun China College of Computer Science and Technology JiLin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education JiLin University Changchun China
Video saliency prediction is an important task in the field of computer vision. Most of the existing video saliency prediction methods only focus on image information, and the audio information is often ignored. This ...
来源: 评论
Multi-site MRI classification using Weighted federated learning based on Mixture of Experts domain adaptation
Multi-site MRI classification using Weighted federated learn...
收藏 引用
2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
作者: Bai, Tian Zhang, Yingfang Wang, Yuzhao Qin, Yanguo Zhang, Fa Jilin University College of Computer Science and Technology Changchun China Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Changchun China The Second Hospital of Jilin University The Department of Orthopaedics Changchun China Beijing Institute of Technology School of Medical Technology Beijing China
Deep learning often requires large amounts of data from different institutions. Federated learning, as a distributed training framework, enables multiple participants to collaboratively train models without collecting... 详细信息
来源: 评论
DISLOCATIONS WITH CORNERS IN AN ELASTIC BODY WITH APPLICATIONS TO FAULT DETECTION
arXiv
收藏 引用
arXiv 2023年
作者: Diao, Huaian Liu, Hongyu Meng, Qingle School of Mathematics Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Jilin Changchun China Department of Mathematics City University of Hong Kong Kowloon Tong Hong Kong
This paper focuses on an elastic dislocation problem that is motivated by applications in the geophysical and seismological communities. In our model, the displacement satisfies the Lamé system in a bounded domai... 详细信息
来源: 评论
ExplSched: Maximizing Deep Learning Cluster Efficiency for Exploratory Jobs
ExplSched: Maximizing Deep Learning Cluster Efficiency for E...
收藏 引用
IEEE International Conference on Cluster Computing
作者: Hongliang Li Hairui Zhao Zhewen Xu Xiang Li Haixiao Xu College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Changchun China High Performance Computing Center Jilin University China
Resource management for Deep Learning (DL) clusters is essential for system efficiency and model training quality. Existing schedulers provided by DL frameworks are mostly adaptations from traditional HPC clusters and...
来源: 评论
NegativePrompt: Leveraging Psychology for Large Language Models Enhancement via Negative Emotional Stimuli
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Xu Li, Cheng Chang, Yi Wang, Jindong Wu, Yuan School of Artificial Intelligence Jilin University China Institute of Software CAS China Microsoft Research Asia China Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University China International Center of Future Science Jilin University China
Large Language Models (LLMs) have become integral to a wide spectrum of applications, ranging from traditional computing tasks to advanced artificial intelligence (AI) applications. This widespread adoption has spurre... 详细信息
来源: 评论
Learning Group-Disentangled Representation for Interpretable Thoracic Pathologic Prediction
Learning Group-Disentangled Representation for Interpretable...
收藏 引用
2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
作者: Li, Hao Wu, Yirui Hu, Hexuan Lu, Hu Lai, Yong Wan, Shaohua Hohai University Key Laboratory of Water Big Data Technology of Ministry of Water Resources China College of Computer and Information Hohai University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China School of Computer Science and Communication Engineering Jiangsu University China Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China China
Deep learning methods have shown significant performance in medical image analysis tasks. However, they generally act like 'black box' without explanations in both feature extraction and decision processes, le... 详细信息
来源: 评论
Scalable Precise computation of Shannon Entropy
arXiv
收藏 引用
arXiv 2025年
作者: Lai, Yong Tong, Haolong Xu, Zhenghang Yin, Minghao College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun130012 China School of Computer Science and Information Technology Northeast Normal University Changchun130017 China
Quantitative information flow analyses (QIF) are a class of techniques for measuring the amount of confidential information leaked by a program to its public outputs. Shannon entropy is an important method to quantify... 详细信息
来源: 评论