咨询与建议

限定检索结果

文献类型

  • 471 篇 期刊文献
  • 420 篇 会议

馆藏范围

  • 891 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 623 篇 工学
    • 499 篇 计算机科学与技术...
    • 423 篇 软件工程
    • 135 篇 信息与通信工程
    • 78 篇 控制科学与工程
    • 65 篇 生物工程
    • 46 篇 生物医学工程(可授...
    • 43 篇 机械工程
    • 42 篇 电子科学与技术(可...
    • 40 篇 电气工程
    • 37 篇 化学工程与技术
    • 30 篇 光学工程
    • 21 篇 航空宇航科学与技...
    • 16 篇 仪器科学与技术
    • 16 篇 交通运输工程
    • 13 篇 动力工程及工程热...
    • 12 篇 土木工程
    • 10 篇 网络空间安全
  • 329 篇 理学
    • 233 篇 数学
    • 74 篇 生物学
    • 55 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 37 篇 化学
    • 27 篇 系统科学
  • 212 篇 管理学
    • 110 篇 管理科学与工程(可...
    • 102 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 33 篇 医学
    • 25 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 12 篇 法学
    • 10 篇 社会学
  • 9 篇 农学
  • 5 篇 经济学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 军事学

主题

  • 49 篇 computer science
  • 41 篇 educational inst...
  • 41 篇 laboratories
  • 39 篇 educational tech...
  • 37 篇 knowledge engine...
  • 23 篇 computer science...
  • 21 篇 data mining
  • 16 篇 reinforcement le...
  • 16 篇 semantics
  • 12 篇 deep learning
  • 12 篇 image segmentati...
  • 12 篇 contrastive lear...
  • 12 篇 feature extracti...
  • 11 篇 ontologies
  • 10 篇 authentication
  • 10 篇 artificial intel...
  • 9 篇 recommender syst...
  • 9 篇 topology
  • 8 篇 sun
  • 8 篇 computational mo...

机构

  • 426 篇 college of compu...
  • 286 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 44 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 35 篇 college of softw...
  • 33 篇 school of artifi...
  • 31 篇 college of compu...
  • 23 篇 key laboratory o...
  • 21 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 17 篇 school of comput...
  • 16 篇 jilin university...
  • 15 篇 key laboratory o...
  • 14 篇 key laboratory o...
  • 14 篇 college of compu...
  • 14 篇 the college of c...
  • 13 篇 international ce...

作者

  • 39 篇 yang bo
  • 34 篇 sun geng
  • 32 篇 li ximing
  • 27 篇 ouyang jihong
  • 25 篇 dantong ouyang
  • 24 篇 niyato dusit
  • 22 篇 ouyang dantong
  • 22 篇 liu dayou
  • 22 篇 yanheng liu
  • 22 篇 bo yang
  • 21 篇 chen haipeng
  • 21 篇 huang lan
  • 21 篇 li jiahui
  • 20 篇 liu yanheng
  • 20 篇 li xiongfei
  • 19 篇 guan renchu
  • 18 篇 dayou liu
  • 17 篇 chang yi
  • 17 篇 wang jiacheng
  • 16 篇 wang jian

语言

  • 720 篇 英文
  • 145 篇 其他
  • 27 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computation and Knowledge Engineering of the MoE"
891 条 记 录,以下是351-360 订阅
排序:
Dataset-Level Color Augmentation and Multi-Scale Exploration Methods for Polyp Segmentation
SSRN
收藏 引用
SSRN 2024年
作者: Chen, Haipeng Ju, Honghong Qin, Jun Song, Jincai Lyu, Yingda Liu, Xianzhu College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China College of Computer Science and Technology Changchun University of Science and Technology Changchun130022 China Public Computer Education and Research Center Jilin University Changchun130012 China National and Local Joint Engineering Research Center of Space Optoelectronics Technology Changchun University of Science and Technology Changchun130022 China College of Opto-Electronic Engineering Changchun University of Science and Technology Changchun130022 China
Automatic segmentation of polyps from colonoscopy images plays a critical role in early screening and treatment of colorectal cancer. Although deep learning methods have made significant progress, precise polyp segmen... 详细信息
来源: 评论
Multi-Label Feature Selection Method Based on Dynamic Weight
Research Square
收藏 引用
Research Square 2021年
作者: Zhang, Ping Sheng, Jiyao Gao, Wanfu Hu, Juncheng Li, Yonghao College of Computer Science and Technology JiLin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China College of Chemistry Jilin University Changchun China
Multi-label feature selection attracts considerable attention from multi-label learning. Information-theory based multi-label feature selection methods intend to select the most informative features and reduce the unc... 详细信息
来源: 评论
Sample efficient imitation learning via reward function trained in advance
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, LiHua Liu, Quan School of Computer Science and Technology Soochow University Soochow China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Soochow China Key Laboratory of Symbolic Computation Knowledge Engineering of Ministry of Education Jilin University Jilin China
Imitation learning (IL) is a framework that learns to imitate expert behavior from demonstrations. Recently, IL shows promising results on high dimensional and control tasks. However, IL typically suffers from sample ... 详细信息
来源: 评论
Supervised topic models with weighted words:multi-label document classification
收藏 引用
Frontiers of Information Technology & Electronic engineering 2018年 第4期19卷 513-523页
作者: Yue-peng ZOU Ji-hong OUYANG Xi-ming LI College of Computer Science and Technology Jilin University MOE Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University
Supervised topic modeling algorithms have been successfully applied to multi-label document classification *** models include labeled latent Dirichlet allocation(L-LDA)and ***,these models neglect the class frequency ... 详细信息
来源: 评论
IE-GAN: An Improved Evolutionary Generative Adversarial Network Using a New Fitness Function and a Generic Crossover Operator
arXiv
收藏 引用
arXiv 2021年
作者: Li, Junjie Li, Jingyao Zhou, Wenbo Lü, Shuai The Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University Ministry of Education China College of Computer Science and Technology Jilin University China The School of Information Science and Technology Northeast Normal University China
The training of generative adversarial networks (GANs) is usually vulnerable to mode collapse and vanishing gradients. The evolutionary generative adversarial network (E-GAN) attempts to alleviate these issues by opti... 详细信息
来源: 评论
Traffic Jam Prediction Based on Analysis of Residents Spatial Activities
Traffic Jam Prediction Based on Analysis of Residents Spatia...
收藏 引用
Computer Information and Big Data Applications (CIBDA), International Conference on
作者: Zhijin Lv Hao Fu Wei Tang Xiaoxu Chen College of Software Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Changchun
The prediction of urban traffic congestion has always been one of the important contents in the research of intelligent transportation systems. The difficulty in predicting urban traffic congestion is that urban traff... 详细信息
来源: 评论
Aerial Active STAR-RIS-assisted Satellite-Terrestrial Covert Communications
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Chuang Sun, Geng Li, Jiahui Wang, Jiacheng Zhang, Ruichen Niyato, Dusit Mao, Shiwen Quek, Tony Q.S. Computer Science and Technology Jilin University Changchun130012 China Singapore University of Technology and Design Singapore487372 Singapore College of Computer Science and Technology Jilin University Changchun130012 China College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China Department of Electrical and Computer Engineering Auburn University AuburnAL36849 United States Information System Technology and Design Pillar Singapore University of Technology and Design Singapore487372 Singapore
An integration of satellites and terrestrial networks is crucial for enhancing performance of next generation communication systems. However, the networks are hindered by the long-distance path loss and security risks... 详细信息
来源: 评论
Incomplete graph learning: A comprehensive survey
收藏 引用
Neural networks : the official journal of the International Neural Network Society 2025年 190卷 107682页
作者: Riting Xia Huibo Liu Anchen Li Xueyan Liu Yan Zhang Chunxu Zhang Bo Yang College of Computer Science Inner Mongolia University Hohhot 010021 China. Electronic address: xiart19@***. College of Computer Science Inner Mongolia University Hohhot 010021 China. Electronic address: liuhuibo@***. School of Computer Science and Technology Jilin University Changchun Jilin 130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun Jilin 130012 China. Electronic address: liac@***. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun Jilin 130012 China. Electronic address: xueyanliu@***. College of Computer Science Inner Mongolia University Hohhot 010021 China. Electronic address: yanz19@***. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun Jilin 130012 China. Electronic address: zhangchunxu@***. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun Jilin 130012 China. Electronic address: ybo@***.
Graph learning is a prevalent field that operates on ubiquitous graph data. Effective graph learning methods can extract valuable information from graphs. However, these methods are non-robust and affected by missing ... 详细信息
来源: 评论
Document-level Relation Extraction with Relation Correlations
arXiv
收藏 引用
arXiv 2022年
作者: Han, Ridong Peng, Tao Wang, Benyou Liu, Lu Wan, Xiang College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education China College of Software Jilin University China Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen China School of Data Science The Chinese University of Hong Kong Shenzhen China
Document-level relation extraction faces two overlooked challenges: long-tail problem and multi-label problem. Previous work focuses mainly on obtaining better contextual representations for entity pairs, hardly addre... 详细信息
来源: 评论
Elucidating Spatial Complex Structures from Mass Spectrometry Imaging with Deep Multimodal Model
Elucidating Spatial Complex Structures from Mass Spectrometr...
收藏 引用
Medical Artificial Intelligence (MedAI), IEEE International Conference on
作者: Jiangnan Cui Junjie Xia Xuan Li Yan Wang Fufang Qiu Yaochen Xu Keren Xu Chunman Zuo School of Computer Science and Technology Institute of Artificial Intelligence Donghua University Shanghai China Institute of Artificial Intelligence Donghua University Shanghai China College of Computer Science and Technology Jilin University Changchun China Department of Neurosurgery Huashan Hospital Shanghai China CAS Key Laboratory of Systems Biology Shanghai Institute of Biochemistry and Cell Biology Center for Excellence in Molecular Cell Science Chinese Academy of Sciences Shanghai China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China
Spatial mass spectrometry imaging (SMSI) technology has enabled the characterization of biomolecule patterns within the tissue microenvironment, yet its analyses suffer from substantial noise. The lack of effective me...
来源: 评论