咨询与建议

限定检索结果

文献类型

  • 477 篇 期刊文献
  • 420 篇 会议

馆藏范围

  • 897 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 631 篇 工学
    • 507 篇 计算机科学与技术...
    • 433 篇 软件工程
    • 141 篇 信息与通信工程
    • 78 篇 控制科学与工程
    • 65 篇 生物工程
    • 46 篇 生物医学工程(可授...
    • 42 篇 机械工程
    • 41 篇 电子科学与技术(可...
    • 39 篇 电气工程
    • 36 篇 化学工程与技术
    • 30 篇 光学工程
    • 22 篇 航空宇航科学与技...
    • 17 篇 交通运输工程
    • 16 篇 仪器科学与技术
    • 13 篇 动力工程及工程热...
    • 13 篇 土木工程
    • 11 篇 网络空间安全
  • 333 篇 理学
    • 237 篇 数学
    • 74 篇 生物学
    • 56 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 36 篇 化学
    • 28 篇 系统科学
  • 217 篇 管理学
    • 112 篇 管理科学与工程(可...
    • 106 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 32 篇 医学
    • 24 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 12 篇 法学
    • 10 篇 社会学
  • 9 篇 农学
  • 5 篇 经济学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 军事学

主题

  • 49 篇 computer science
  • 41 篇 educational inst...
  • 41 篇 laboratories
  • 39 篇 educational tech...
  • 37 篇 knowledge engine...
  • 23 篇 computer science...
  • 21 篇 data mining
  • 16 篇 semantics
  • 15 篇 reinforcement le...
  • 12 篇 image segmentati...
  • 12 篇 contrastive lear...
  • 12 篇 feature extracti...
  • 11 篇 deep learning
  • 11 篇 ontologies
  • 11 篇 artificial intel...
  • 10 篇 authentication
  • 9 篇 recommender syst...
  • 9 篇 topology
  • 8 篇 sun
  • 8 篇 computational mo...

机构

  • 431 篇 college of compu...
  • 285 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 43 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 34 篇 college of softw...
  • 33 篇 school of artifi...
  • 31 篇 college of compu...
  • 29 篇 key laboratory o...
  • 24 篇 jilin university...
  • 20 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 17 篇 school of comput...
  • 15 篇 key laboratory o...
  • 15 篇 the college of c...
  • 14 篇 key laboratory o...
  • 14 篇 college of compu...
  • 13 篇 international ce...

作者

  • 39 篇 yang bo
  • 35 篇 sun geng
  • 31 篇 li ximing
  • 27 篇 ouyang jihong
  • 25 篇 dantong ouyang
  • 25 篇 liu dayou
  • 24 篇 niyato dusit
  • 22 篇 ouyang dantong
  • 22 篇 yanheng liu
  • 22 篇 li jiahui
  • 22 篇 bo yang
  • 21 篇 chen haipeng
  • 21 篇 huang lan
  • 21 篇 liu yanheng
  • 20 篇 li xiongfei
  • 19 篇 guan renchu
  • 18 篇 dayou liu
  • 17 篇 chang yi
  • 17 篇 wang jian
  • 17 篇 wang jiacheng

语言

  • 799 篇 英文
  • 63 篇 其他
  • 35 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computation and Knowledge Engineering of the MoE"
897 条 记 录,以下是61-70 订阅
排序:
Aspect-Based Sentiment Analysis with Explicit Sentiment Augmentations
arXiv
收藏 引用
arXiv 2023年
作者: Ouyang, Jihong Yang, Zhiyao Liang, Silong Wang, Bing Wang, Yimeng Li, Ximing College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of MOE Jilin University China
Aspect-based sentiment analysis (ABSA), a fine-grained sentiment classification task, has received much attention recently. Many works investigate sentiment information through opinion words, such as "good" ... 详细信息
来源: 评论
Structure-Based Uncertainty Estimation for Source-Free Active Domain Adaptation
收藏 引用
IET Computer Vision 2025年 第1期19卷
作者: Ouyang, Jihong Zhang, Zhengjie Meng, Qingyi Chi, Jinjin College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China
Active domain adaptation (active DA) provides an effective solution by selectively labelling a limited number of target samples to significantly enhance adaptation performance. However, existing active DA methods ofte... 详细信息
来源: 评论
Improving Local Search for Pseudo Boolean Optimization by Fragile Scoring Function and Deep Optimization  29
Improving Local Search for Pseudo Boolean Optimization by Fr...
收藏 引用
29th International Conference on Principles and Practice of Constraint Programming, CP 2023
作者: Zhou, Wenbo Zhao, Yujiao Wang, Yiyuan Cai, Shaowei Wang, Shimao Wang, Xinyu Yin, Minghao School of Information Science and Technology Northeast Normal University Changchun China Key Laboratory of Applied Statistics of MOE Northeast Normal University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of MOE Jilin University Changchun China State Key Laboratory of Computer Science Institute of Software Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China
Pseudo-Boolean optimization (PBO) is usually used to model combinatorial optimization problems, especially for some real-world applications. Despite its significant importance in both theory and applications, there ar... 详细信息
来源: 评论
Stochastic Adversarial Networks for Multi-Domain Text Classification
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Xu Wu, Yuan School of Artificial Intelligence Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University China
Adversarial training has been instrumental in advancing multi-domain text classification (MDTC). Traditionally, MDTC methods employ a shared-private paradigm, with a shared feature extractor for domain-invariant knowl... 详细信息
来源: 评论
Hybrid Parameter Update: Alleviating Imbalance Impacts for Distributed Deep Learning  24
Hybrid Parameter Update: Alleviating Imbalance Impacts for D...
收藏 引用
24th IEEE International Conference on High Performance Computing and Communications, 8th IEEE International Conference on Data Science and Systems, 20th IEEE International Conference on Smart City and 8th IEEE International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application, HPCC/DSS/SmartCity/DependSys 2022
作者: Li, Hongliang Xu, Dong Xu, Zhewen Li, Xiang College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Changchun China
Nowadays, data parallelism has been widely applied to train large datasets on distributed deep learning clusters, but it has suffered from costly global parameter updates at batch barriers. Performance imbalance among... 详细信息
来源: 评论
In-context decision transformer: reinforcement learning via hierarchical chain-of-thought  24
In-context decision transformer: reinforcement learning via ...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Sili Huang Jifeng Hu Hechang Chen Lichao Sun Bo Yang School of Artificial Intelligence and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China School of Artificial Intelligence Jilin University China Lehigh University Bethlehem Pennsylvania Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China
In-context learning is a promising approach for offline reinforcement learning (RL) to handle online tasks, which can be achieved by providing task prompts. Recent works demonstrated that in-context RL could emerge wi...
来源: 评论
SMRI: A New Method for siRNA Design for COVID-19 Therapy
收藏 引用
Journal of Computer Science & Technology 2022年 第4期37卷 991-1002页
作者: Meng-Xin Chen Xiao-Dong Zhu Hao Zhang Zhen Liu Yuan-Ning Liu College of Software Jilin UniversityChangchun 130012China Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Jilin UniversityChangchun 130012China College of Computer Science and Technology Jilin UniversityChangchun 130012China Graduate School of Engineering Nagasaki Institute of Applied ScienceNagasaki 851-0193Japan
First discovered in Wuhan, China, SARS-CoV-2 is a highly pathogenic novel coronavirus, which rapidly spreads globally and becomes a pandemic with no vaccine and limited distinctive clinical drugs available till March ... 详细信息
来源: 评论
Semi-supervised Multi-label Learning with Balanced Binary Angular Margin Loss  38
Semi-supervised Multi-label Learning with Balanced Binary An...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Li, Ximing Liang, Silong Li, Changchun Wang, Pengfei Gu, Fangming College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Computer Network Information Center Chinese Academy of Sciences China University of Chinese Academy of Sciences Chinese Academy of Sciences China
Semi-supervised multi-label learning (SSMLL) refers to inducing classifiers using a small number of samples with multiple labels and many unlabeled samples. The prevalent solution of SSMLL involves forming pseudo-labe...
来源: 评论
Decision mamba: reinforcement learning via hybrid selective sequence modeling  24
Decision mamba: reinforcement learning via hybrid selective ...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Sili Huang Jifeng Hu Zhejian Yang Liwei Yang Tao Luo Hechang Chen Lichao Sun Bo Yang Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education and School of Artificial Intelligence Jilin University China School of Artificial Intelligence Jilin University China Institute of High Performance Computing Agency for Science Technology and Research Singapore Lehigh University Bethlehem Pennsylvania Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education
Recent works have shown the remarkable superiority of transformer models in reinforcement learning (RL), where the decision-making problem is formulated as sequential generation. Transformer-based agents could emerge ...
来源: 评论
Measuring drug similarity using drug–drug interactions
收藏 引用
Quantitative Biology 2024年 第2期12卷 164-172页
作者: Ji Lv Guixia Liu Yuan Ju Houhou Huang Ying Sun College of Computer Science and Technology Jilin UniversityChangchunChina Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin UniversityChangchunChina Sichuan University Library Sichuan UniversityChengduChina College of Chemistry Jilin UniversityChangchunChina Department of Respiratory Medicine The First Hospital of Jilin UniversityChangchunChina
Combination therapy is a promising approach to address the challenge of antimicrobial resistance,and computational models have been proposed for predicting drug–drug *** existing models rely on drug similarity measur... 详细信息
来源: 评论