咨询与建议

限定检索结果

文献类型

  • 539 篇 期刊文献
  • 469 篇 会议
  • 1 册 图书

馆藏范围

  • 1,009 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 703 篇 工学
    • 558 篇 计算机科学与技术...
    • 481 篇 软件工程
    • 162 篇 信息与通信工程
    • 82 篇 控制科学与工程
    • 78 篇 生物工程
    • 55 篇 生物医学工程(可授...
    • 50 篇 机械工程
    • 46 篇 电子科学与技术(可...
    • 45 篇 电气工程
    • 40 篇 化学工程与技术
    • 33 篇 光学工程
    • 23 篇 仪器科学与技术
    • 21 篇 航空宇航科学与技...
    • 18 篇 交通运输工程
    • 15 篇 土木工程
    • 14 篇 动力工程及工程热...
    • 13 篇 网络空间安全
  • 378 篇 理学
    • 259 篇 数学
    • 90 篇 生物学
    • 59 篇 统计学(可授理学、...
    • 45 篇 物理学
    • 40 篇 化学
    • 30 篇 系统科学
  • 247 篇 管理学
    • 131 篇 管理科学与工程(可...
    • 119 篇 图书情报与档案管...
    • 35 篇 工商管理
  • 40 篇 医学
    • 32 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 15 篇 法学
    • 13 篇 社会学
  • 12 篇 农学
  • 5 篇 经济学
  • 5 篇 教育学
  • 3 篇 文学
  • 3 篇 艺术学
  • 2 篇 军事学
  • 1 篇 哲学

主题

  • 52 篇 computer science
  • 44 篇 educational inst...
  • 44 篇 laboratories
  • 43 篇 knowledge engine...
  • 41 篇 educational tech...
  • 26 篇 data mining
  • 24 篇 computer science...
  • 22 篇 semantics
  • 14 篇 reinforcement le...
  • 14 篇 feature extracti...
  • 13 篇 deep learning
  • 13 篇 image segmentati...
  • 13 篇 artificial intel...
  • 12 篇 ontologies
  • 11 篇 contrastive lear...
  • 11 篇 topology
  • 10 篇 recommender syst...
  • 10 篇 authentication
  • 9 篇 genetic algorith...
  • 9 篇 data models

机构

  • 422 篇 college of compu...
  • 272 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 41 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 34 篇 college of softw...
  • 32 篇 college of compu...
  • 32 篇 school of artifi...
  • 29 篇 key laboratory o...
  • 23 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 17 篇 school of comput...
  • 17 篇 key laboratory o...
  • 16 篇 jilin university...
  • 15 篇 key laboratory o...
  • 15 篇 school of cyber ...
  • 15 篇 the college of c...
  • 14 篇 key laboratory o...
  • 14 篇 college of compu...

作者

  • 38 篇 yang bo
  • 35 篇 sun geng
  • 28 篇 li ximing
  • 27 篇 ouyang jihong
  • 26 篇 liu dayou
  • 25 篇 dantong ouyang
  • 23 篇 niyato dusit
  • 22 篇 ouyang dantong
  • 22 篇 yanheng liu
  • 21 篇 li jiahui
  • 21 篇 bo yang
  • 21 篇 liu yanheng
  • 19 篇 liu da-you
  • 19 篇 da-you liu
  • 19 篇 li xiongfei
  • 18 篇 chen haipeng
  • 18 篇 dayou liu
  • 18 篇 huang lan
  • 17 篇 chang yi
  • 17 篇 wang jian

语言

  • 914 篇 英文
  • 57 篇 其他
  • 38 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computing and Knowledge Engineering"
1009 条 记 录,以下是341-350 订阅
排序:
Spirit distillation: A model compression method with multi-domain knowledge transfer
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Zhiyuan Jiang, Yu Zhao, Minghao Cui, Chupeng Yang, Zongmin Xue, Xinhui Qi, Hong College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation Knowledge Engineering of Ministry of Education Jilin University Changchun China
Recent applications pose requirements of both cross-domain knowledge transfer and model compression to machine learning models due to insufficient training data and limited computational resources. In this paper, we p... 详细信息
来源: 评论
PepLand: A large-scale pre-trained peptide representation model for a comprehensive landscape of both canonical and non-canonical amino acids
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Ruochi Wu, Haoran Xiu, Yuting Li, Kewei Chen, Ningning Wang, Yu Wang, Yan Gao, Xin Zhou, Fengfeng Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Jilin Changchun130012 China School of Artificial Intelligence Jilin University Changchun130012 China Syneron Technology Guangzhou510700 China College of Computer Science and Technology Jilin University Jilin Changchun130012 China Thuwal23955 Saudi Arabia Thuwal23955 Saudi Arabia
In recent years, the scientific community has become increasingly interested on peptides with non-canonical amino acids due to their superior stability and resistance to proteolytic degradation. These peptides present... 详细信息
来源: 评论
ReconBoost: Boosting Can Achieve Modality Reconcilement
arXiv
收藏 引用
arXiv 2024年
作者: Hua, Cong Xu, Qianqian Bao, Shilong Yang, Zhiyong Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
This paper explores a novel multi-modal alternating learning paradigm pursuing a reconciliation between the exploitation of uni-modal features and the exploration of cross-modal interactions. This is motivated by the ... 详细信息
来源: 评论
Text-guided Reconstruction Network for Sentiment Analysis with Uncertain Missing Modalities
收藏 引用
IEEE Transactions on Affective computing 2025年
作者: Shi, Piao Hu, Min Nakagawa, Satoshi Zheng, Xiangming Shi, Xuefeng Ren, Fuji Hefei University of Technology Key Laboratory of Knowledge Engineering with Big Data Ministry of Education Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine National Smart Eldercare International Science and Technology Cooperation Base School of Computer Science and Information Engineering Anhui Hefei230601 China Bozhou University School of Electronic and Information Engineering Bozhou236800 China University of Tokyo Graduate School of Information Science and Technology Tokyo113-8656 Japan University of Electronic Science and Technology of China College of Computer Science and Engineering Chengdu611731 China University of Electronic Science and Technology of China Shenzhen Institute for Advanced Study Shenzhen518110 China
Multimodal Sentiment Analysis (MSA) is an attractive research that aims to integrate sentiment expressed in textual, visual, and acoustic signals. There are two main problems in the existing methods: 1) the dominant r... 详细信息
来源: 评论
Multi-focus image fusion based on fully convolutional networks
收藏 引用
Frontiers of Information Technology & Electronic engineering 2020年 第7期21卷 1019-1033页
作者: Rui GUO Xuan-jing SHEN Xiao-yu DONG Xiao-li ZHANG Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin UniversityChangchun 130012China College of Computer Science and Technology Jilin UniversityChangchun 130012China
We propose a multi-focus image fusion method, in which a fully convolutional network for focus detection(FD-FCN) is constructed. To obtain more precise focus detection maps, we propose to add skip layers in the networ... 详细信息
来源: 评论
FastClass: A Time-Efficient Approach to Weakly-Supervised Text Classification
arXiv
收藏 引用
arXiv 2022年
作者: Xia, Tingyu Wang, Yue Tian, Yuan Chang, Yi School of Artificial Intelligence Jilin University China School of Information and Library Science University of North Carolina Chapel Hill United States Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University China International Center of Future Science Jilin University China
Weakly-supervised text classification aims to train a classifier using only class descriptions and unlabeled data. Recent research shows that keyword-driven methods can achieve state-of-the-art performance on various ... 详细信息
来源: 评论
When Federated Recommendation Meets Cold-Start Problem: Separating Item Attributes and User Interactions
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Chunxu Zhang, Zijian Long, Guodong Yan, Peng Zhou, Tianyi Yang, Bo College of Computer Science and Technology Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Changchun China College of Computer Science and Technology Jilin University City University of Hong Kong China Australian Artificial Intelligence Institute FEIT University of Technology Sydney Sydney Australia Computer Science and UMIACS University of Maryland Maryland United States
Federated recommendation systems usually trains a global model on the server without direct access to users’ private data on their own devices. However, this separation of the recommendation model and users’ private... 详细信息
来源: 评论
Automatic Controversy Detection Based on Heterogeneous Signed Attributed Network and Deep Dual-Layer Self-Supervised Community Analysis
SSRN
收藏 引用
SSRN 2023年
作者: Li, Ying Zhang, Xiao Liang, Yu Li, Qianqian Key Laboratory of Symbolic Computation and Knowledge Engineering College of Computer Science and Technology Jilin University Qianjin Street Jilin Changchun130012 China Institutes of Science and Development Chinese Academy of Sciences ZhongGuanCun BeiYiTiao Beijing100190 China School of Public Policy and Management University of Chinese Academy of Sciences ShiJingShan YuQuanLu Beijing100049 China
Controversial analysis entails identifying and scrutinizing contentious events or issues within a specific domain. Detecting controversy, particularly on social media, poses challenges due to the need to consider nume... 详细信息
来源: 评论
ReconBoost: boosting can achieve modality reconcilement  24
ReconBoost: boosting can achieve modality reconcilement
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Cong Hua Qianqian Xu Shilong Bao Zhiyong Yang Qingming Huang Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China and School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China Institute of Information Engineering Chinese Academy of Sciences Beijing China and School of Cyber Security University of Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China and Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China and Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
This paper explores a novel multi-modal alternating learning paradigm pursuing a reconciliation between the exploitation of uni-modal features and the exploration of cross-modal interactions. This is motivated by the ...
来源: 评论
Document-Level Relation Extraction with Entity Type Constraints
SSRN
收藏 引用
SSRN 2024年
作者: Han, Ridong Peng, Tao Zhu, BeiBei Bi, Haijia Han, Jiayu Liu, Lu College of Computer Science and Technology Jilin University Jilin Changchun130012 China College of Software Jilin University Jilin Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin Changchun130012 China College of Computer and Artificial Intelligence Liaoning Normal University Liaoning Dalian116081 China Department of Linguistics University of Washington SeattleWA98195 United States
Long-tail problem and multi-label problem are two commonly encountered challenges in document-level relation extraction task. Current efforts are concerned with enhancing the representations of entity pairs through Tr... 详细信息
来源: 评论