咨询与建议

限定检索结果

文献类型

  • 470 篇 期刊文献
  • 442 篇 会议
  • 1 册 图书

馆藏范围

  • 913 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 631 篇 工学
    • 496 篇 计算机科学与技术...
    • 427 篇 软件工程
    • 135 篇 信息与通信工程
    • 78 篇 控制科学与工程
    • 70 篇 生物工程
    • 54 篇 生物医学工程(可授...
    • 47 篇 机械工程
    • 46 篇 电子科学与技术(可...
    • 41 篇 电气工程
    • 36 篇 化学工程与技术
    • 32 篇 光学工程
    • 21 篇 航空宇航科学与技...
    • 20 篇 仪器科学与技术
    • 17 篇 交通运输工程
    • 14 篇 土木工程
    • 13 篇 动力工程及工程热...
  • 338 篇 理学
    • 237 篇 数学
    • 81 篇 生物学
    • 56 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 36 篇 化学
    • 26 篇 系统科学
  • 218 篇 管理学
    • 121 篇 管理科学与工程(可...
    • 97 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 39 篇 医学
    • 31 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 13 篇 法学
    • 11 篇 社会学
  • 11 篇 农学
  • 5 篇 经济学
  • 4 篇 教育学
  • 3 篇 文学
  • 3 篇 艺术学
  • 2 篇 军事学

主题

  • 51 篇 computer science
  • 44 篇 educational inst...
  • 42 篇 laboratories
  • 41 篇 knowledge engine...
  • 41 篇 educational tech...
  • 24 篇 data mining
  • 24 篇 computer science...
  • 15 篇 feature extracti...
  • 14 篇 reinforcement le...
  • 14 篇 semantics
  • 13 篇 image segmentati...
  • 13 篇 contrastive lear...
  • 12 篇 ontologies
  • 11 篇 deep learning
  • 11 篇 topology
  • 10 篇 authentication
  • 9 篇 recommender syst...
  • 9 篇 genetic algorith...
  • 9 篇 artificial intel...
  • 9 篇 multiobjective o...

机构

  • 406 篇 college of compu...
  • 284 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 44 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 35 篇 college of softw...
  • 31 篇 college of compu...
  • 23 篇 school of artifi...
  • 23 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 18 篇 jilin university...
  • 18 篇 school of comput...
  • 15 篇 key laboratory o...
  • 15 篇 college of compu...
  • 14 篇 key laboratory o...
  • 13 篇 college of compu...
  • 13 篇 the college of c...
  • 11 篇 college of softw...

作者

  • 39 篇 yang bo
  • 34 篇 sun geng
  • 28 篇 li ximing
  • 25 篇 ouyang jihong
  • 23 篇 niyato dusit
  • 23 篇 dantong ouyang
  • 22 篇 liu dayou
  • 22 篇 yanheng liu
  • 22 篇 bo yang
  • 21 篇 chen haipeng
  • 21 篇 li jiahui
  • 20 篇 liu yanheng
  • 20 篇 li xiongfei
  • 19 篇 ouyang dantong
  • 19 篇 huang lan
  • 19 篇 da-you liu
  • 18 篇 dayou liu
  • 17 篇 guan renchu
  • 17 篇 liang yanchun
  • 16 篇 wang jian

语言

  • 784 篇 英文
  • 111 篇 其他
  • 19 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computing and Knowledge Engineering Ministry of Education"
913 条 记 录,以下是151-160 订阅
排序:
Uncertainty-Aware Global-View Reconstruction for Multi-View Multi-Label Feature Selection  39
Uncertainty-Aware Global-View Reconstruction for Multi-View ...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Hao, Pingting Liu, Kunpeng Gao, Wanfu College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Department of Computer Science Portland State University PortlandOR97201 United States
In recent years, multi-view multi-label learning (MVML) has gained popularity due to its close resemblance to real-world scenarios. However, the challenge of selecting informative features to ensure both performance a... 详细信息
来源: 评论
UAV-assisted Joint Mobile Edge computing and Data Collection via Matching-enabled Deep Reinforcement Learning
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Boxiong Kang, Hui Li, Jiahui Sun, Geng Sun, Zemin Wang, Jiacheng Niyato, Dusit College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China College of Computing and Data Science Nanyang Technological University 639798 Singapore College of Computing and Data Science Nanyang Technological University Singapore
Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) and data collection (DC) have been popular research issues. Different from existing works that consider MEC and DC scenarios separately, this paper in... 详细信息
来源: 评论
Robust Federated Semi-Supervised Learning for Medical Image Classification via Pseudo-Label Filtering
Robust Federated Semi-Supervised Learning for Medical Image ...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Ziwei Wang Shuyu Guo Mingzhu Zhu Tian Bai College of Software Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China College of Computer Science and Technology Jilin University Changchun China
Federated learning (FL) enables collaborative model training across multiple medical institutions to ensure data security. However, due to the variations in medical imaging equipment and regions at different medical i... 详细信息
来源: 评论
Reconsidering Feature Structure Information and Latent Space Alignment in Partial Multi-label Feature Selection  39
Reconsidering Feature Structure Information and Latent Space...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Pan, Hanlin Liu, Kunpeng Gao, Wanfu College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Department of Computer Science Portland State University PortlandOR97201 United States
The purpose of partial multi-label feature selection is to select the most representative feature subset, where the data comes from partial multi-label datasets that have label ambiguity issues. For label disambiguati... 详细信息
来源: 评论
WHO IS YOUR RIGHT MIXUP PARTNER IN POSITIVE AND UNLABELED LEARNING  10
WHO IS YOUR RIGHT MIXUP PARTNER IN POSITIVE AND UNLABELED LE...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Li, Changchun Li, Ximing Feng, Lei Ouyang, Jihong College of Computer Science and Technology Jilin University China College of Computer Science Chongqing University China Imperfect Information Learning Team RIKEN Center for Advanced Intelligence Project Japan Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education China
Positive and Unlabeled (PU) learning targets inducing a binary classifier from weak training datasets of positive and unlabeled instances, which arise in many real-world applications. In this paper, we propose a novel... 详细信息
来源: 评论
WGAN-GP_Glu: A semi-supervised model based on double generator-Wasserstein GAN with gradient penalty algorithm for glutarylation site identification
收藏 引用
Computers in Biology and Medicine 2025年 184卷 109328-109328页
作者: Ning, Qiao Qi, Zedong Information Science and Technology Dalian Maritime University Liaoning Dalian China The School of Artificial Intelligence and Computer Science Jiangnan University Wuxi China Neusoft Education Technology Group Dalian China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China
As an important post-translational modification, glutarylation plays a crucial role in a variety of cellular functions. Recently, diverse computational methods for glutarylation site identification have been proposed.... 详细信息
来源: 评论
Dynamic QoS-Driven Framework for Co-Scheduling of Distributed Long-Running Applications on Shared Clusters
收藏 引用
IEEE Transactions on Cloud computing 2025年
作者: Zhu, Jianyong Wang, Hongtao Su, Pan Wang, Yang Pan, Weihua North China Electric Power University Department of Computer China Hebei Key Laboratory of Knowledge Computing for Energy & Power China Ministry of Education Engineering Research Center of Intelligent Computing for Complex Energy Systems China
Cloud service providers typically co-locate various workloads within the same production cluster to improve resource utilization and reduce operational costs. These workloads primarily consist of batch analysis jobs c... 详细信息
来源: 评论
Improved CS Algorithm and its Application in Parking Space Prediction
收藏 引用
Journal of Bionic engineering 2020年 第5期17卷 1075-1083页
作者: Rui Guo Xuanjing Shen Hui Kang College of Computer Science and Technology Jilin UniversityChangchun 130012China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin UniversityChangchun 130012China
This paper simulates the cuckoo incubation process and flight path to optimize the Wavelet Neural Network(WNN)model,and proposes a parking prediction algorithm based on WNN and improved Cuckoo Search(CS)***,the initia... 详细信息
来源: 评论
Dpdn: A Novel Approach to Mbd with Multiple Observations
SSRN
收藏 引用
SSRN 2023年
作者: Tai, Ran Ouyang, Dantong Liu, Weiting Zhang, Liming College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun130012 China
Model-based diagnosis (MBD) with multiple abnormal observations poses a significant challenge. To address this, we propose the Dual Principles with Decision Node (DPDN) algorithm. DPDN encompasses two novel principles... 详细信息
来源: 评论
Reconsidering Feature Structure Information and Latent Space Alignment in Partial Multi-label Feature Selection
arXiv
收藏 引用
arXiv 2025年
作者: Pan, Hanlin Liu, Kunpeng Gao, Wanfu College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Department of Computer Science Portland State University PortlandOR97201 United States
The purpose of partial multi-label feature selection is to select the most representative feature subset, where the data comes from partial multi-label datasets that have label ambiguity issues. For label disambiguati... 详细信息
来源: 评论