咨询与建议

限定检索结果

文献类型

  • 554 篇 期刊文献
  • 494 篇 会议
  • 1 册 图书

馆藏范围

  • 1,049 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 732 篇 工学
    • 584 篇 计算机科学与技术...
    • 486 篇 软件工程
    • 165 篇 信息与通信工程
    • 104 篇 控制科学与工程
    • 78 篇 生物工程
    • 55 篇 生物医学工程(可授...
    • 50 篇 机械工程
    • 47 篇 电气工程
    • 47 篇 电子科学与技术(可...
    • 39 篇 化学工程与技术
    • 33 篇 光学工程
    • 23 篇 仪器科学与技术
    • 22 篇 航空宇航科学与技...
    • 18 篇 交通运输工程
    • 15 篇 土木工程
    • 14 篇 动力工程及工程热...
    • 14 篇 网络空间安全
  • 379 篇 理学
    • 261 篇 数学
    • 89 篇 生物学
    • 60 篇 统计学(可授理学、...
    • 47 篇 物理学
    • 39 篇 化学
    • 30 篇 系统科学
  • 251 篇 管理学
    • 134 篇 管理科学与工程(可...
    • 120 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 40 篇 医学
    • 32 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 15 篇 法学
    • 13 篇 社会学
  • 12 篇 农学
  • 5 篇 经济学
  • 5 篇 教育学
  • 3 篇 文学
  • 3 篇 艺术学
  • 2 篇 军事学
  • 1 篇 哲学

主题

  • 52 篇 computer science
  • 44 篇 educational inst...
  • 44 篇 laboratories
  • 43 篇 knowledge engine...
  • 41 篇 educational tech...
  • 26 篇 data mining
  • 24 篇 computer science...
  • 22 篇 semantics
  • 17 篇 feature extracti...
  • 15 篇 reinforcement le...
  • 15 篇 contrastive lear...
  • 14 篇 image segmentati...
  • 13 篇 deep learning
  • 13 篇 artificial intel...
  • 12 篇 ontologies
  • 11 篇 topology
  • 10 篇 recommender syst...
  • 10 篇 authentication
  • 10 篇 training
  • 9 篇 genetic algorith...

机构

  • 438 篇 college of compu...
  • 287 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 43 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 35 篇 college of softw...
  • 33 篇 school of artifi...
  • 31 篇 college of compu...
  • 29 篇 key laboratory o...
  • 24 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 18 篇 school of comput...
  • 16 篇 college of compu...
  • 15 篇 key laboratory o...
  • 15 篇 school of cyber ...
  • 15 篇 the college of c...
  • 14 篇 key laboratory o...

作者

  • 39 篇 yang bo
  • 36 篇 sun geng
  • 31 篇 li ximing
  • 27 篇 ouyang jihong
  • 26 篇 liu dayou
  • 25 篇 dantong ouyang
  • 24 篇 niyato dusit
  • 23 篇 bo yang
  • 22 篇 ouyang dantong
  • 22 篇 yanheng liu
  • 22 篇 li jiahui
  • 21 篇 chen haipeng
  • 21 篇 huang lan
  • 21 篇 liu yanheng
  • 20 篇 li xiongfei
  • 19 篇 guan renchu
  • 19 篇 liu da-you
  • 19 篇 da-you liu
  • 18 篇 dayou liu
  • 17 篇 chang yi

语言

  • 913 篇 英文
  • 97 篇 其他
  • 39 篇 中文
检索条件"机构=Key Laboratory of Symbolic Computing and Knowledge Engineering of"
1049 条 记 录,以下是241-250 订阅
排序:
Closed Loop Networks for Open-Set Semi-Supervised Learning
SSRN
收藏 引用
SSRN 2023年
作者: Ouyang, Jihong Meng, Qingyi Li, Ximing Zhang, Zhengjie Li, Changchun Wang, Wenting College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University China Department of Computer Science University of Texas Dallas United States
Open-Set Semi-Supervised Learning (OS-SSL) refers to the task of learning classifiers with labeled and unlabeled instances, but the unlabeled data may contain the instances associated with unseen labels, dubbed as Out... 详细信息
来源: 评论
IoT Device Identification via A Bio-Inspired Feature Selection Approach
IoT Device Identification via A Bio-Inspired Feature Selecti...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Boxiong Wang Hui Kang Geng Sun Jiahui Li College of Software Jilin University Changchun China College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun China
The rapid development of the Internet-of-Things (IoT) also brings security and other problems. Device identification is a crucial tool for IoT security issues, which can detect and prevent cyber-attacks. Feature selec...
来源: 评论
Talking Head Generation for Media Interaction System with Feature Disentanglement
Talking Head Generation for Media Interaction System with Fe...
收藏 引用
International Conference on Parallel and Distributed Systems (ICPADS)
作者: Lei Zhang Qingyang Chen Zhilei Liu College of Intelligence and Computing School of New Media and Communication Tianjin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun P.R. China State Key Laboratory for Novel Software Technology Nanjing University P.R. China School of New Media and Communication Tianjin University Tianjin China College of Intelligence and Computing Tianjin University Tianjin China
The task of talking head generation for the media interaction system is to take images and audio clips of the target face as input, and generate a realistic video of the target synchronized with the audio. Most of the... 详细信息
来源: 评论
Efficient Heuristics for Learning Scalable Bayesian Network Classifier from Labeled and Unlabeled Data
SSRN
收藏 引用
SSRN 2023年
作者: Wang, Limin Wang, Junjie Guo, Lu Li, Qilong Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China College of Software Jilin University Changchun130012 China College of Instrumentation and Electrical Engineering Jilin University Changchun130012 China
Naive Bayes (NB) is one of the top ten machine learning algorithms whereas its attribute independence assumption rarely holds in practice. A feasible and efficient approach to improving NB is relaxing the assumption b... 详细信息
来源: 评论
Semi-supervised multi-label learning with balanced binary angular margin loss  24
Semi-supervised multi-label learning with balanced binary an...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Ximing Li Silong Liang Changchun Li Pengfei Wang Fangming Gu College of Computer Science and Technology Jilin University China and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Computer Network Information Center Chinese Academy of Sciences China and University of Chinese Academy of Sciences Chinese Academy of Sciences China
Semi-supervised multi-label learning (SSMLL) refers to inducing classifiers using a small number of samples with multiple labels and many unlabeled samples. The prevalent solution of SSMLL involves forming pseudo-labe...
来源: 评论
Why Misinformation is Created? Detecting them by Integrating Intent Features
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Bing Fu, Bo Li, Ximing Pei, Songwen Li, Changchun Wang, Shengsheng College of Computer Science and Technology Jilin University Changchun Jilin China Liaoning Normal University Liaoning Dalian China University of Shanghai for Science and Technology Shanghai China Key Laboratory of Symbolic Computation and Knowledge Engineering The Ministry of Education Jilin University China
Various social media platforms, e.g., Twitter and Reddit, allow people to disseminate a plethora of information more efficiently and conveniently. However, they are inevitably full of misinformation, causing damage to... 详细信息
来源: 评论
Joint Optimization of UAV-Carried IRS for Urban Low Altitude mmWave Communications with Deep Reinforcement Learning
arXiv
收藏 引用
arXiv 2025年
作者: Xie, Wenwen Sun, Geng Liu, Bei Li, Jiahui Wang, Jiacheng Du, Hongyang Niyato, Dusit Kim, Dong In The College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun130012 China The College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore The College of Computing and Data Science Nanyang Technological University Singapore The Department of Electrical and Electronic Engineering The University of Hong Kong 999077 Hong Kong The Department of Electrical and Computer Engineering Sungkyunkwan University Suwon16419 Korea Republic of
Emerging technologies in sixth generation (6G) of wireless communications, such as terahertz communication and ultra-massive multiple-input multiple-output, present promising prospects. Despite the high data rate pote... 详细信息
来源: 评论
LET-Net: locally enhanced transformer network for medical image segmentation
LET-Net: locally enhanced transformer network for medical im...
收藏 引用
作者: Ta, Na Chen, Haipeng Liu, Xianzhu Jin, Nuo College of Computer Science and Technology Jilin University Changchun130012 China College of Computer Hulunbuir University Hulunbuir021008 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China National and Local Joint Engineering Research Center of Space Optoelectronics Technology Changchun University of Science and Technology Changchun130022 China Southampton Business School University of Southampton SouthamptonSO17 1BJ United Kingdom
Medical image segmentation has attracted increasing attention due to its practical clinical requirements. However, the prevalence of small targets still poses great challenges for accurate segmentation. In this paper,... 详细信息
来源: 评论
TYPE-SUPERVISED SEQUENCE LABELING BASED ON THE HETEROGENEOUS STAR GRAPH FOR NAMED ENTITY RECOGNITION
arXiv
收藏 引用
arXiv 2022年
作者: Wen, Xueru Zhou, Changjiang Tang, Haotian Liang, Luguang Jiang, Yu Qi, Hong College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University China
Named entity recognition is a fundamental task in natural language processing, identifying the span and category of entities in unstructured texts. The traditional sequence labeling methodology ignores the nested enti... 详细信息
来源: 评论
Discrepancy-Guided Reconstruction Learning for Image Forgery Detection
arXiv
收藏 引用
arXiv 2023年
作者: Shi, Zenan Chen, Haipeng Chen, Long Zhang, Dong College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Department of CSE The Hong Kong University of Science and Technology Hong Kong
In this paper, we propose a novel image forgery detection paradigm for boosting the model learning capacity on both forgery-sensitive and genuine compact visual patterns. Compared to the existing methods that only foc... 详细信息
来源: 评论