咨询与建议

限定检索结果

文献类型

  • 624 篇 期刊文献
  • 620 篇 会议

馆藏范围

  • 1,244 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 882 篇 工学
    • 706 篇 计算机科学与技术...
    • 616 篇 软件工程
    • 182 篇 信息与通信工程
    • 108 篇 控制科学与工程
    • 88 篇 生物工程
    • 73 篇 生物医学工程(可授...
    • 60 篇 机械工程
    • 55 篇 电子科学与技术(可...
    • 54 篇 化学工程与技术
    • 46 篇 光学工程
    • 46 篇 电气工程
    • 27 篇 仪器科学与技术
    • 23 篇 交通运输工程
    • 23 篇 航空宇航科学与技...
    • 21 篇 土木工程
    • 16 篇 建筑学
    • 15 篇 网络空间安全
  • 480 篇 理学
    • 343 篇 数学
    • 105 篇 生物学
    • 83 篇 统计学(可授理学、...
    • 60 篇 物理学
    • 55 篇 化学
    • 35 篇 系统科学
  • 294 篇 管理学
    • 153 篇 管理科学与工程(可...
    • 147 篇 图书情报与档案管...
    • 45 篇 工商管理
  • 47 篇 医学
    • 39 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 26 篇 药学(可授医学、理...
  • 20 篇 农学
  • 17 篇 法学
    • 15 篇 社会学
  • 7 篇 经济学
  • 6 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 2 篇 军事学
  • 1 篇 哲学

主题

  • 66 篇 computer science
  • 57 篇 educational inst...
  • 53 篇 knowledge engine...
  • 53 篇 laboratories
  • 50 篇 educational tech...
  • 41 篇 data mining
  • 27 篇 semantics
  • 27 篇 computer science...
  • 27 篇 ontology
  • 22 篇 image segmentati...
  • 22 篇 feature extracti...
  • 16 篇 reinforcement le...
  • 16 篇 deep learning
  • 16 篇 genetic algorith...
  • 15 篇 artificial intel...
  • 14 篇 ontologies
  • 14 篇 contrastive lear...
  • 14 篇 topology
  • 14 篇 clustering algor...
  • 13 篇 support vector m...

机构

  • 527 篇 college of compu...
  • 284 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 46 篇 college of softw...
  • 43 篇 key laboratory o...
  • 41 篇 school of artifi...
  • 36 篇 key laboratory o...
  • 31 篇 college of compu...
  • 29 篇 key laboratory o...
  • 25 篇 jilin university...
  • 22 篇 school of comput...
  • 20 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 17 篇 department of co...
  • 15 篇 key laboratory o...
  • 15 篇 the college of c...
  • 15 篇 key laboratory o...

作者

  • 47 篇 yang bo
  • 36 篇 sun geng
  • 36 篇 liang yanchun
  • 33 篇 ouyang dantong
  • 31 篇 dantong ouyang
  • 31 篇 li ximing
  • 31 篇 li xiongfei
  • 27 篇 liu dayou
  • 27 篇 ouyang jihong
  • 27 篇 zuo wanli
  • 26 篇 bo yang
  • 26 篇 yanchun liang
  • 24 篇 niyato dusit
  • 24 篇 liu yanheng
  • 23 篇 guan renchu
  • 23 篇 yanheng liu
  • 23 篇 huang lan
  • 22 篇 li jiahui
  • 21 篇 chen haipeng
  • 20 篇 da-you liu

语言

  • 1,128 篇 英文
  • 66 篇 其他
  • 50 篇 中文
检索条件"机构=Key Laboratory of Symbolic of Computation and Knowledge Engineering"
1244 条 记 录,以下是721-730 订阅
排序:
On the "normal" error formula for bivariate ideal interpolation
On the "normal" error formula for bivariate ideal interpolat...
收藏 引用
第六届全国计算机数学学术会议
作者: Yihe Gong Xue Jiang Shugong Zhang Institute of Mathematics Key Lab.of Symbolic Computation and Knowledge EngineeringJilin UniversityChangchun130012China
In this paper we investigate an error formula for bivariate ideal *** shall call it the "normal" error formula which derives from the "good" error formula raised by Carl de *** prov...
来源: 评论
Curve length estimation based on cubic spline interpolation in gray-scale images
收藏 引用
Journal of Zhejiang University-Science C(Computers and Electronics) 2013年 第10期14卷 777-784页
作者: Zhen-xin WANG Ji-hong OUYANG College of Computer Science and Technology Jilin University MOE Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University
This paper deals with a novel local arc length estimator for curves in gray-scale *** method first estimates a cubic spline curve fit for the boundary points using the gray-level information of the nearby pixels,and t... 详细信息
来源: 评论
Improve the quality of XML clustering by boosting theory
收藏 引用
Journal of computational Information Systems 2013年 第11期9卷 4247-4254页
作者: Liu, Zhaojun Li, Xiongfei Li, Wei Key Laboratory of Symbolic Computation and Knowledge Engineering for Ministry of Education Jilin University Changchun 130012 China
XML documents cluster analysis is a hot research topic. Researchers proposed a number of methods to cluster XML document collections. Boosting is successful well-known methods for improving the quality of clustering. ... 详细信息
来源: 评论
Applying functional dependencies to improve the performance and robustness of hidden naive bayes
收藏 引用
Journal of computational Information Systems 2013年 第19期9卷 7967-7974页
作者: Qin, Shidong Wang, Limin Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun 130012 China
Hidden Naive Bayes (HNB) has demonstrated remarkable progress in classification accuracy, accurate class probability estimation and ranking. Since HNB is based on one-dependence estimators to get the approximate value... 详细信息
来源: 评论
An approach of VM image customized through Linux from scratch on cloud platform
收藏 引用
Computer Modelling and New Technologies 2014年 第4期18卷 62-67页
作者: Xu, Gaochao Dong, Yushuang Sun, Bingyi Fu, Xiaodong Zhao, Jia Department of Computer Science and Technology JiLin University Changchun 130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun 130012 China
The cloud platform provides abundant resources and services for users. More and more mobile users began to use the cloud services. They have higher real-time demands on service. The size of traditional virtual machine... 详细信息
来源: 评论
A Modified Particle Swarm Optimization Algorithm for Reliability Redundancy Optimization Problem
A Modified Particle Swarm Optimization Algorithm for Reliabi...
收藏 引用
The 6th International Conference on Computer Research and Development
作者: Yubao Liu Guihe Qin College of Computer Science and Technology Jilin University College of Computer Science and Technology Changchun University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University
In this paper, a modified particle swarm optimization(MPSO) algorithm is proposed to solve the reliability redundancy optimization problem. This algorithm modifies the strategy of generating new position of particles.... 详细信息
来源: 评论
Automatic labelling of topic models learned from Twitter by summarisation
Automatic labelling of topic models learned from Twitter by ...
收藏 引用
52nd Annual Meeting of the Association for computational Linguistics, ACL 2014
作者: Cano Basave, Amparo Elizabeth He, Yulan Xu, Ruifeng Knowledge Media Institute Open University United Kingdom School of Engineering and Applied Science Aston University United Kingdom Key Laboratory of Network Oriented Intelligent Computation Shenzhen Graduate School Harbin Institute of Technology China
Latent topics derived by topic models such as Latent Dirichlet Allocation (LDA) are the result of hidden thematic structures which provide further insights into the data. The automatic labelling of such topics derived... 详细信息
来源: 评论
Essential protein identification based on essential protein-protein interaction prediction by integrated edge weights
Essential protein identification based on essential protein-...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Yuexu Jiang Yan Wang Wei Pang Liang Chen Huiyan Sun Yanchun Liang Enrico Blanzieri Key Laboratory of Symbolic Computation and Knowledge Jilin University Changchun China Department of Information Engineering and Computer Science University of Trento Povo Italy School of Natural and Computing Sciences University of Aberdeen Aberdeen UK
Essential proteins are crucial to cellular survival and development. Traditionally, essential proteins are identified by knock-out experiments, which are expensive and often fatal to the target organisms. Regarding th... 详细信息
来源: 评论
26th Annual computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROSCIENCE 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
Shape classes registration and retrieval based on shape parts matching
收藏 引用
Journal of computational Information Systems 2013年 第4期9卷 1493-1499页
作者: Wang, Zhenxin Ouyang, Jihong College of Computer Science and Technology Jilin University Changchun 130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun 130012 China
This paper finds the most expressive segments of a shape category called similar and discriminative parts, which can distinguish the learned shape class from other groups. The proposed model chooses a computationally ... 详细信息
来源: 评论