咨询与建议

限定检索结果

文献类型

  • 1,464 篇 会议
  • 739 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 2,204 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,382 篇 工学
    • 524 篇 控制科学与工程
    • 519 篇 软件工程
    • 518 篇 计算机科学与技术...
    • 302 篇 机械工程
    • 201 篇 信息与通信工程
    • 167 篇 电气工程
    • 116 篇 仪器科学与技术
    • 105 篇 电子科学与技术(可...
    • 91 篇 交通运输工程
    • 82 篇 生物工程
    • 78 篇 动力工程及工程热...
    • 76 篇 光学工程
    • 53 篇 化学工程与技术
    • 41 篇 材料科学与工程(可...
    • 40 篇 土木工程
    • 36 篇 船舶与海洋工程
    • 32 篇 生物医学工程(可授...
    • 31 篇 安全科学与工程
  • 716 篇 理学
    • 397 篇 数学
    • 214 篇 系统科学
    • 150 篇 物理学
    • 128 篇 统计学(可授理学、...
    • 94 篇 生物学
    • 45 篇 化学
  • 263 篇 管理学
    • 221 篇 管理科学与工程(可...
    • 63 篇 工商管理
    • 42 篇 图书情报与档案管...
  • 39 篇 医学
    • 30 篇 临床医学
  • 38 篇 经济学
    • 37 篇 应用经济学
  • 32 篇 法学
    • 31 篇 社会学
  • 13 篇 农学
  • 7 篇 军事学
  • 5 篇 教育学
  • 4 篇 文学
  • 3 篇 艺术学

主题

  • 63 篇 feature extracti...
  • 53 篇 optimization
  • 50 篇 robustness
  • 48 篇 simulation
  • 47 篇 predictive model...
  • 45 篇 model predictive...
  • 43 篇 heuristic algori...
  • 41 篇 training
  • 40 篇 real-time system...
  • 37 篇 trajectory
  • 36 篇 multi-agent syst...
  • 35 篇 accuracy
  • 35 篇 mathematical mod...
  • 31 篇 stability analys...
  • 31 篇 uncertainty
  • 30 篇 object detection
  • 30 篇 computational mo...
  • 30 篇 estimation
  • 29 篇 cameras
  • 28 篇 roads

机构

  • 328 篇 department of au...
  • 318 篇 key laboratory o...
  • 158 篇 department of au...
  • 141 篇 key laboratory o...
  • 115 篇 shanghai enginee...
  • 83 篇 department of au...
  • 51 篇 shaanxi key labo...
  • 44 篇 department of au...
  • 43 篇 shanghai jiao to...
  • 39 篇 ministry of educ...
  • 39 篇 department of au...
  • 39 篇 shanghai jiao to...
  • 37 篇 shaanxi key labo...
  • 32 篇 department of au...
  • 30 篇 the department o...
  • 26 篇 shaanxi key labo...
  • 25 篇 department of au...
  • 24 篇 department of au...
  • 24 篇 school of electr...
  • 23 篇 department of au...

作者

  • 107 篇 shaoyuan li
  • 99 篇 xinping guan
  • 98 篇 cailian chen
  • 75 篇 guan xinping
  • 74 篇 chen cailian
  • 73 篇 dewei li
  • 59 篇 yugeng xi
  • 57 篇 jingcheng wang
  • 55 篇 wang hesheng
  • 52 篇 li dewei
  • 52 篇 li shaoyuan
  • 51 篇 hesheng wang
  • 46 篇 xiaofan wang
  • 45 篇 yang bo
  • 43 篇 bo yang
  • 43 篇 he jianping
  • 43 篇 lin wang
  • 42 篇 weidong chen
  • 39 篇 wang lin
  • 38 篇 yin xiang

语言

  • 2,014 篇 英文
  • 163 篇 其他
  • 30 篇 中文
检索条件"机构=Key Laboratory of System Control and Information Processing MOE"
2204 条 记 录,以下是711-720 订阅
排序:
Fusing Geometrical and Visual information via Superpoints for the Semantic Segmentation of 3D Road Scenes
收藏 引用
Tsinghua Science and Technology 2020年 第4期25卷 498-507页
作者: Liuyuan Deng Ming Yang Zhidong Liang Yuesheng He Chunxiang Wang the Department of Automation Shanghai Jiao Tong UniversityShanghai 200240China the Key Laboratory of System Control and Information Processing Ministry of Education of ChinaShanghai 200240China the Research Institute of Robotics Shanghai Jiao Tong UniversityShanghai 200240China
This paper addresses the problem of the semantic segmentation of large-scale 3D road scenes by incorporating the complementary advantages of point clouds and *** make full use of geometrical and visual information,thi... 详细信息
来源: 评论
CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs  39
CAD-GPT: Synthesising CAD Construction Sequence with Spatial...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Wang, Siyu Chen, Cailian Le, Xinyi Xu, Qimin Xu, Lei Zhang, Yanzhou Yang, Jie School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China SJTU-Paris Elite Institute of Technology Shanghai Jiao Tong University Shanghai China Institute of Cyber Science and Technology Shanghai Jiao Tong University Shanghai China Shanghai Key Laboratory of Integrated Administration Technologies for Information Security Shanghai China University of Minnesota Twin Cities Saint PaulMN United States
Computer-aided design (CAD) significantly enhances the efficiency, accuracy, and innovation of design processes by enabling precise 2D and 3D modeling, extensive analysis, and optimization. Existing methods for creati... 详细信息
来源: 评论
GP-based LMPC for Nonlinear system with Stability Guarantee
GP-based LMPC for Nonlinear System with Stability Guarantee
收藏 引用
第32届中国过程控制会议(CPCC2021)
作者: Tongqiang Zhang Shaoyuan Li Yi Zheng Shanghai Jiao Tong University Key Laboratory of System Control and Information ProcessingMinistry of Education of China
The Gaussian process model inferred from the Bayesian framework is a powerful modeling *** provides not only the predictive value,but also the uncertainty measure for the predictive *** this paper,we combine the GP mo... 详细信息
来源: 评论
ACLFs-based MPC for Nonlinear systems with Uncertainty
ACLFs-based MPC for Nonlinear Systems with Uncertainty
收藏 引用
第32届中国过程控制会议(CPCC2021)
作者: Yanye Wang Shaoyuan Li Yi Zheng Qiangyu Li Shanghai Jiao Tong University Key Laboratory of System Control and Information ProcessingMinistry of Education of China
In this paper,we propose the framework to design a stabilized adaptive MPC for nonlinear systems with unknown *** problem is how to design the stability *** firstly design a piece-wise continuous control law and a par... 详细信息
来源: 评论
Multi-Frame Self-Supervised Depth Estimation with Multi-Scale Feature Fusion in Dynamic Scenes
arXiv
收藏 引用
arXiv 2023年
作者: Zhong, Jiquan Huang, Xiaolin Yu, Xiao Department of Automation Xiamen University Xiamen China Department of Automation Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Department of Automation Xiamen University Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen China
Monocular depth estimation is a fundamental task in computer vision and multimedia. The self-supervised learning pipeline makes it possible to train the monocular depth network with no need of depth labels. In this pa... 详细信息
来源: 评论
Prediction of piRNA-mRNA interactions based on an interactive inference network
Prediction of piRNA-mRNA interactions based on an interactiv...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Yajun Liu Ru Li Aimin Li Rong Fei Xie Guo Fang-Xiang Wu Shaanxi Key Laboratory for Network Computing and Security Technology Xi'an University of Technology Xi'an China Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi'an University of Technology Xi'an China Department of Computer Science Department of Mechanical Engineering Division of Biomedical Engineering University of Saskatchewan Saskatoon Canada
As the largest class of small non-coding RNAs, piRNAs primarily present in the reproductive cells of mammals, which influence post-transcriptional processes of mRNAs in multiple ways. Effective methods for predicting ...
来源: 评论
A Model-free False Data Injection Attack Strategy in Networked control systems
A Model-free False Data Injection Attack Strategy in Network...
收藏 引用
IEEE Conference on Decision and control
作者: Xiaoyu Luo Chongrong Fang Chengcheng Zhao Jianping He The Department of Automation Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China and Shanghai Engineering Research Center of Intelligent Control and Management Shanghai China The State Key Laboratory of Industrial Control Technology and Institute of Cyberspace Research Zhejiang University China
The data-driven attack strategies recently have received much attention when the full knowledge of the system model is unknown or difficult to be obtained for the adversary. Note that despite the critical parameters o... 详细信息
来源: 评论
Modeling, Prediction and Risk Management of Distribution system Voltages with Non-Gaussian Probability Distributions
arXiv
收藏 引用
arXiv 2024年
作者: Gao, Yuanhai Xu, Xiaoyuan Yan, Zheng Shahidehpour, Mohammad Yang, Bo Guan, Xinping The Ministry of Education Key Laboratory of Control of Power Transmission and Conversion Shanghai Jiao Tong University Shanghai200240 China The Shanghai Non-carbon Energy Conversion Utilization Institute Shanghai200240 China The Galvin Center for Electricity Innovation Illinois Institute of Technology ChicagoIL60616 United States The Department of Automation The Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai Jiao Tong University Shanghai200240 China
High renewable energy penetration into power distribution systems causes a substantial risk of exceeding voltage security limits, which needs to be accurately assessed and properly managed. However, the existing metho... 详细信息
来源: 评论
A Performance-Based Model Recovery Anti-Windup Design for Linear systems Subject to Actuator Saturation
A Performance-Based Model Recovery Anti-Windup Design for Li...
收藏 引用
American control Conference (ACC)
作者: Wenxin Lai Yuanlong Li Zongli Lin Department of Automation Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai China Charles L. Brown Department of Electrical and Computer Engineering University of Virginia Char-lottesville VA U.S.A.
In this paper, we investigate the problem of reference tracking for a class of linear systems subject to actuator saturation and propose a performance-based model recovery anti-windup strategy. We adopt the classic mo... 详细信息
来源: 评论
Incremental Online Learning of Randomized Neural Network with Forward Regularization
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Junda Hu, Minghui Li, Ning Al-Ali, Abdulaziz Suganthan, Ponnuthurai Nagaratnam The Key Laboratory of System Control and Information Processing Ministry of Education of China China The Department of Automation Shanghai Jiao Tong University Shanghai200240 China The Shanghai Engineering Research Center of Intelligent Control and Management Shanghai200240 China The School of Electrical and Electronic Nanyang Technological University Singapore The KINDI Computing Research Center College of Engineering Qatar University Qatar
Online learning of deep neural networks suffers from challenges such as hysteretic non-incremental updating, increasing memory usage, past retrospective retraining, and catastrophic forgetting. To alleviate these draw...
来源: 评论