咨询与建议

限定检索结果

文献类型

  • 336 篇 会议
  • 194 篇 期刊文献

馆藏范围

  • 530 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 348 篇 工学
    • 171 篇 信息与通信工程
    • 152 篇 计算机科学与技术...
    • 130 篇 软件工程
    • 61 篇 控制科学与工程
    • 56 篇 仪器科学与技术
    • 42 篇 光学工程
    • 38 篇 电子科学与技术(可...
    • 36 篇 生物工程
    • 33 篇 环境科学与工程(可...
    • 31 篇 测绘科学与技术
    • 26 篇 航空宇航科学与技...
    • 25 篇 电气工程
    • 21 篇 机械工程
    • 15 篇 土木工程
    • 14 篇 建筑学
    • 12 篇 网络空间安全
    • 11 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 化学工程与技术
  • 175 篇 理学
    • 93 篇 数学
    • 45 篇 物理学
    • 38 篇 生物学
    • 28 篇 统计学(可授理学、...
    • 21 篇 化学
    • 8 篇 大气科学
    • 8 篇 地球物理学
    • 7 篇 系统科学
  • 38 篇 管理学
    • 19 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
  • 26 篇 农学
    • 26 篇 农业资源与环境
  • 4 篇 医学
  • 2 篇 经济学
  • 2 篇 艺术学
  • 1 篇 法学
  • 1 篇 军事学

主题

  • 64 篇 synthetic apertu...
  • 26 篇 feature extracti...
  • 24 篇 radar polarimetr...
  • 24 篇 training
  • 23 篇 remote sensing
  • 22 篇 image coding
  • 18 篇 radar imaging
  • 16 篇 image reconstruc...
  • 15 篇 three-dimensiona...
  • 15 篇 visualization
  • 15 篇 semantics
  • 15 篇 satellites
  • 15 篇 encoding
  • 14 篇 image segmentati...
  • 13 篇 object detection
  • 13 篇 mathematical mod...
  • 12 篇 deep neural netw...
  • 12 篇 decoding
  • 12 篇 image resolution
  • 11 篇 imaging

机构

  • 139 篇 cas key laborato...
  • 61 篇 aerospace inform...
  • 58 篇 school of electr...
  • 55 篇 key laboratory o...
  • 45 篇 institute of ele...
  • 42 篇 university of ch...
  • 34 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 20 篇 department of au...
  • 14 篇 suzhou aerospace...
  • 13 篇 the cas key labo...
  • 13 篇 key laboratory o...
  • 13 篇 key laboratory o...
  • 10 篇 microsoft resear...
  • 10 篇 key laboratory o...
  • 10 篇 graduate univers...
  • 8 篇 cas key laborato...
  • 8 篇 national key lab...
  • 7 篇 key laboratory o...
  • 7 篇 the cas key labo...

作者

  • 44 篇 chen zhibo
  • 43 篇 qiu xiaolan
  • 33 篇 xiaolan qiu
  • 32 篇 li houqiang
  • 30 篇 ding chibiao
  • 26 篇 dong liu
  • 25 篇 liu dong
  • 23 篇 zhibo chen
  • 23 篇 houqiang li
  • 22 篇 li li
  • 22 篇 chibiao ding
  • 18 篇 zhang zhe
  • 18 篇 wu yirong
  • 18 篇 zhou wei
  • 17 篇 zhou wengang
  • 17 篇 zhang bingchen
  • 17 篇 feng wu
  • 15 篇 li xin
  • 15 篇 bin lei
  • 14 篇 yu kang

语言

  • 514 篇 英文
  • 8 篇 中文
  • 7 篇 其他
检索条件"机构=Key Laboratory of Technology in Geo-Spatial Information Processing and Application Systems"
530 条 记 录,以下是161-170 订阅
排序:
Multi-scale Region-level Graph Convolutional Network for Unsupervised SAR image Change Detection
Multi-scale Region-level Graph Convolutional Network for Uns...
收藏 引用
2024 International Conference on Remote Sensing, Mapping, and Image processing, RSMIP 2024
作者: Zhu, Jingxing Liu, Rui Wang, Feng You, Hongjian Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Chinese Academy of Sciences Beijing China Aerospace Information Research Institute Chinese Academy of Sciences Beijing China School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
With the rapid advancement of synthetic aperture radar (SAR) sensors, it has become more important to extract change information between high-resolution SAR images. Considering the efficacy and robustness of segmentat... 详细信息
来源: 评论
DEEP UNFOLDING NETWORK FOR SPARSE SAR IMAGING BASED ON COMPOUND REGULARIZATION
DEEP UNFOLDING NETWORK FOR SPARSE SAR IMAGING BASED ON COMPO...
收藏 引用
IET International Radar Conference 2023, IRC 2023
作者: Zhou, Guoru Xu, Zhongqiu Fan, Yizhe Zhang, Zhe Zhang, Bingchen Wu, Yirong Aerospace Information Research Institute Chinese Academy of Sciences Beijing China Key Laboratory of Technology in Geo-spatial Information Processing and Application System Chinese Academy of Sciences Beijing China School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
How to get an accurate image of multi-class targets scene is the key to synthetic aperture radar (SAR) imaging research. In sparse SAR imaging, compound regularization constrains multi-class target features by setting... 详细信息
来源: 评论
Electromagnetic Simulation Aided SAR Target Classification Via Deep Domain Adaptation
Electromagnetic Simulation Aided SAR Target Classification V...
收藏 引用
2021 CIE International Conference on Radar, Radar 2021
作者: Lv, Xiaoling Qiu, Xiaolan Yu, Wenming Aerospace Information Research Institute Chinese Academy of Sciences School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China Suzhou Aerospace Information Research Institute Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Suzhou China Southeast University State Key Laboratory of Millimeter Waves Nanjing China
Convolutional neural networks (CNNs) have made tremendous success in optical images classification recently. However, in synthetic aperture radar (SAR) target classification, it is difficult to annotate a large amount... 详细信息
来源: 评论
Improve spaceborne SAR geometric accuracy using DORIS
Improve spaceborne SAR geometric accuracy using DORIS
收藏 引用
IET International Radar Conference 2009
作者: Jiayin, Liu Wen, Hong Yueguan, Lin Key Laboratory of Technology in Geo-spatial Information Processing and Application System Institute of Electronics Chinese Academy of Sciences Beijing 100190 China National Key Laboratory of Microwave Imaging Technology Institute of Electronics Chinese Academy of Sciences Beijing 100190 China Graduate University Chinese Academy of Sciences Beijing 100190 China
The paper analyzes the effects of the orbit position errors in terms of the geometric accuracy of the space-borne SAR based on the range-Doppler method. The paper gives the simulation experiment results of the space-b... 详细信息
来源: 评论
A FEATURE ENHANCEMENT METHOD BASED ON THE SUB-APERTURE DECOMPOSITION FOR ROTATING FRAME SHIP DETECTION IN SAR IMAGES
A FEATURE ENHANCEMENT METHOD BASED ON THE SUB-APERTURE DECOM...
收藏 引用
2021 IEEE International geoscience and Remote Sensing Symposium, IGARSS 2021
作者: Lei, Songlin Qiu, Xiaolan Ding, Chibiao Lei, Shujie National Key Laboratory of Microwave Imaging Technology Beijing100190 China Aerospace Information Research Institute Chinese Academy of Sciences Beijing100190 China Key Laboratory of Technology in Geo-spatial Information Processing and Application Systems Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Radio Equipment Research Institute Shanghai201100 China
Deep learning algorithms are widely used in SAR target detection. At present, most detection methods based on neural networks treat SAR images as optical images for processing, and do not fully exploit the characteris... 详细信息
来源: 评论
Saliency & structure preserving multi-operator image retargeting
Saliency & structure preserving multi-operator image retarge...
收藏 引用
International Conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Lingling Zhu Zhibo Chen Xiaoming Chen Ning Liao University of Science and Technology of China CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System Hefei China
Content-aware image retargeting has attracted substantial research interests in the related research community. However, so far there is still no method can preserve important image contents and structure well without... 详细信息
来源: 评论
Perceptual Evaluation of Pre-processing for Video Transcoding
Perceptual Evaluation of Pre-processing for Video Transcodin...
收藏 引用
IEEE Visual Communications and Image processing (VCIP)
作者: Shiyu Huang Ziyuan Luo Jiahua Xu Wei Zhou Zhibo Chen CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System University of Science and Technology of China Hefei China
Recently, the pre-processed video transcoding has attracted wide attention and has been increasingly used in practical applications for improving the perceptual experience and saving transmission resources. However, v... 详细信息
来源: 评论
iWavePro: An improved framework for iWave++
iWavePro: An improved framework for iWave++
收藏 引用
IEEE International Symposium on Circuits and systems (ISCAS)
作者: Dongmei Xue Cunhui Dong Fan Ye Hang Chen Bowei Kang Li Li Dong Liu CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System University of Science and Technology of China Hefei China
End-to-end image coding methods based on wavelet-like transform have made great progress in recent years. The most advanced one is iWave++, which adopts multi-level lifting schemes based on convolutional neural networ...
来源: 评论
AutoDerain: Memory-efficient Neural Architecture Search for Image Deraining
AutoDerain: Memory-efficient Neural Architecture Search for ...
收藏 引用
IEEE Visual Communications and Image processing (VCIP)
作者: Jun Fu Chen Hou Zhibo Chen CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System University of Science and Technology of China Hefei China
Learning-based image deraining methods have achieved remarkable success in the past few decades. Currently, most deraining architectures are developed by human experts, which is a laborious and error-prone process. In... 详细信息
来源: 评论
Deep Multi-Scale Features Learning for Distorted Image Quality Assessment
Deep Multi-Scale Features Learning for Distorted Image Quali...
收藏 引用
IEEE International Symposium on Circuits and systems
作者: Wei Zhou Zhibo Chen CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System University of Science and Technology of China Hefei China
Image quality assessment (IQA) aims to estimate human perception based image visual quality. Although existing deep neural networks (DNNs) have shown significant effectiveness for tackling the IQA problem, it still ne... 详细信息
来源: 评论