咨询与建议

限定检索结果

文献类型

  • 289 篇 期刊文献
  • 216 篇 会议
  • 1 册 图书

馆藏范围

  • 506 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 372 篇 工学
    • 279 篇 计算机科学与技术...
    • 230 篇 软件工程
    • 84 篇 信息与通信工程
    • 52 篇 控制科学与工程
    • 43 篇 生物工程
    • 33 篇 交通运输工程
    • 30 篇 电子科学与技术(可...
    • 25 篇 机械工程
    • 25 篇 电气工程
    • 24 篇 化学工程与技术
    • 21 篇 光学工程
    • 19 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 10 篇 土木工程
    • 8 篇 网络空间安全
    • 7 篇 动力工程及工程热...
    • 7 篇 船舶与海洋工程
  • 163 篇 理学
    • 85 篇 数学
    • 50 篇 生物学
    • 34 篇 统计学(可授理学、...
    • 29 篇 物理学
    • 24 篇 化学
    • 10 篇 系统科学
  • 102 篇 管理学
    • 57 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 18 篇 法学
    • 18 篇 社会学
  • 15 篇 医学
    • 13 篇 临床医学
    • 9 篇 基础医学(可授医学...
  • 11 篇 教育学
    • 10 篇 教育学
  • 4 篇 经济学
  • 4 篇 农学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 17 篇 semantics
  • 13 篇 reinforcement le...
  • 10 篇 object detection
  • 10 篇 benchmark testin...
  • 9 篇 image segmentati...
  • 9 篇 predictive model...
  • 8 篇 knowledge graph
  • 8 篇 neural machine t...
  • 7 篇 deep neural netw...
  • 7 篇 neural networks
  • 7 篇 data mining
  • 7 篇 computational li...
  • 6 篇 recommender syst...
  • 6 篇 graph neural net...
  • 6 篇 machine learning
  • 6 篇 image classifica...
  • 6 篇 forecasting
  • 5 篇 conferences
  • 5 篇 deep learning
  • 5 篇 image restoratio...

机构

  • 144 篇 beijing key lab ...
  • 56 篇 school of comput...
  • 53 篇 beijing key labo...
  • 37 篇 beijing key labo...
  • 25 篇 pattern recognit...
  • 24 篇 school of comput...
  • 23 篇 school of comput...
  • 17 篇 beijing key lab ...
  • 16 篇 beijing key lab ...
  • 15 篇 state key labora...
  • 14 篇 henan joint inte...
  • 13 篇 beijing key labo...
  • 12 篇 beijing key labo...
  • 12 篇 the state key la...
  • 11 篇 peng cheng lab
  • 11 篇 research center ...
  • 11 篇 school of comput...
  • 8 篇 fujian provincia...
  • 8 篇 school of comput...
  • 7 篇 department of el...

作者

  • 60 篇 lin youfang
  • 48 篇 xu jinan
  • 41 篇 chen yufeng
  • 38 篇 jing liping
  • 38 篇 wan huaiyu
  • 36 篇 sang jitao
  • 29 篇 zhou jie
  • 29 篇 meng fandong
  • 26 篇 youfang lin
  • 21 篇 ai bo
  • 21 篇 liping jing
  • 21 篇 guo shengnan
  • 20 篇 liang yunlong
  • 20 篇 yu jian
  • 18 篇 jia caiyan
  • 18 篇 huang yaping
  • 15 篇 song ziying
  • 15 篇 song mingyang
  • 13 篇 jian yu
  • 13 篇 lin yan

语言

  • 431 篇 英文
  • 71 篇 其他
  • 4 篇 中文
检索条件"机构=Key Laboratory of Traffic Data Analysis and Mining"
506 条 记 录,以下是1-10 订阅
排序:
Siamese transformer with hierarchical concept embedding for fine-grained image recognition
收藏 引用
Science China(Information Sciences) 2023年 第3期66卷 188-203页
作者: Yilin LYU Liping JING Jiaqi WANG Mingzhe GUO Xinyue WANG Jian YU School of Computer and Information Technology Beijing Jiaotong University Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Alibaba Group
Distinguishing the subtle differences among fine-grained images from subordinate concepts of a concept hierarchy is a challenging task. In this paper, we propose a Siamese transformer with hierarchical concept embeddi... 详细信息
来源: 评论
Noisy Multi-Label Text Classification via Instance-Label Pair Correction
Noisy Multi-Label Text Classification via Instance-Label Pai...
收藏 引用
2024 Findings of the Association for Computational Linguistics: NAACL 2024
作者: Xu, Pengyu Song, Mingyang Liu, Linkaida Liu, Bing Sun, Hongjian Jing, Liping Yu, Jian Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China
In noisy label learning, instance selection based on small-loss criteria has been proven to be highly effective. However, in the case of noisy multi-label text classification (NMLTC), the presence of noise is not limi... 详细信息
来源: 评论
Dual-Space Knowledge Distillation for Large Language Models
Dual-Space Knowledge Distillation for Large Language Models
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Zhang, Songming Zhang, Xue Sun, Zengkui Chen, Yufeng Xu, Jinan Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China
Knowledge distillation (KD) is known as a promising solution to compress large language models (LLMs) via transferring their knowledge to smaller *** this process, white-box KD methods usually minimize the distance be... 详细信息
来源: 评论
CollabKG: A Learnable Human-Machine-Cooperative Information Extraction Toolkit for (Event) Knowledge Graph Construction  30
CollabKG: A Learnable Human-Machine-Cooperative Information ...
收藏 引用
Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
作者: Wei, Xiang Chen, Yufeng Cheng, Ning Cui, Xingyu Xu, Jinan Han, Wenjuan Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China
In order to construct or extend entity-centric and event-centric knowledge graphs (KG and EKG), the information extraction (IE) annotation toolkit is essential. However, existing IE toolkits have several non-trivial p... 详细信息
来源: 评论
Dynamic Simulation Benchmark for Motion Coordination Tasks
Dynamic Simulation Benchmark for Motion Coordination Tasks
收藏 引用
2024 IEEE International Conference on Unmanned Systems, ICUS 2024
作者: Han, Sheng Ji, Yuning Lin, Youfang Lv, Kai School of Computer and Information Technology Beijing Jiaotong University Beijing Key Laboratory of Traffic Data Analysis and Mining Beijing China
Existing motion coordination simulation environments can only support a limited number of preset scenarios and lack the capability to simulate complex dynamic environments, which hinders the fulfillment of practical n... 详细信息
来源: 评论
Enhancing Multi-Label Text Classification under Label-Dependent Noise: A Label-Specific Denoising Framework
Enhancing Multi-Label Text Classification under Label-Depend...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Xu, Pengyu Jing, Liping Yu, Jian Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China
Recent advancements in noisy multi-label text classification have primarily relied on the class-conditional noise (CCN) assumption, which treats each label independently undergoing label flipping to generate noisy lab... 详细信息
来源: 评论
SKICSE: Sentence Knowable Information Prompted by LLMs Improves Contrastive Sentence Embeddings
SKICSE: Sentence Knowable Information Prompted by LLMs Impro...
收藏 引用
2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
作者: Ou, Fangwei Xu, Jinan Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China
Contrastive learning, which utilizes positive pairs and in-batch negatives to optimize the loss objective, has been proven to be an effective method for learning sentence embeddings. However, we argue that the previou... 详细信息
来源: 评论
DiffLight: A Partial Rewards Conditioned Diffusion Model for traffic Signal Control with Missing data  38
DiffLight: A Partial Rewards Conditioned Diffusion Model for...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Chen, Hanyang Jiang, Yang Guo, Shengnan Mao, Xiaowei Lin, Youfang Wan, Huaiyu School of Computer Science and Technology Beijing Jiaotong University China Beijing Key Laboratory of Traffic Data Analysis and Mining Beijing China
The application of reinforcement learning in traffic signal control (TSC) has been extensively researched and yielded notable achievements. However, most existing works for TSC assume that traffic data from all surrou...
来源: 评论
KG-FPQ: Evaluating Factuality Hallucination in LLMs with Knowledge Graph-based False Premise Questions  31
KG-FPQ: Evaluating Factuality Hallucination in LLMs with Kno...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Zhu, Yanxu Xiao, Jinlin Wang, Yuhang Sang, Jitao Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University China Peng Cheng Lab China
Recent studies have demonstrated that large language models (LLMs) are susceptible to being misled by false premise questions (FPQs), leading to errors in factual knowledge, known as factuality hallucination. Existing... 详细信息
来源: 评论
Detection, Diagnosis, and Explanation: A Benchmark for Chinese Medical Hallucination Evaluation  30
Detection, Diagnosis, and Explanation: A Benchmark for Chine...
收藏 引用
Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
作者: Dou, Chengfeng Zhang, Ying Chen, Yanyuan Jin, Zhi Jiao, Wenpin Zhao, Haiyan Zhao, Yongqiang Tao, Zhenwei Huang, Yun MOE China Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China
Large Language Models (LLMs) have made significant progress recently. However, their practical use in healthcare is hindered by their tendency to generate hallucinations. One specific type, called snowballing hallucin... 详细信息
来源: 评论