咨询与建议

限定检索结果

文献类型

  • 667 篇 会议
  • 648 篇 期刊文献

馆藏范围

  • 1,315 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 408 篇 计算机科学与技术...
    • 348 篇 软件工程
    • 171 篇 机械工程
    • 165 篇 控制科学与工程
    • 140 篇 信息与通信工程
    • 134 篇 电气工程
    • 118 篇 生物工程
    • 115 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 材料科学与工程(可...
    • 75 篇 化学工程与技术
    • 71 篇 力学(可授工学、理...
    • 69 篇 光学工程
    • 60 篇 动力工程及工程热...
    • 52 篇 仪器科学与技术
    • 52 篇 冶金工程
    • 48 篇 土木工程
    • 46 篇 交通运输工程
  • 533 篇 理学
    • 258 篇 数学
    • 207 篇 物理学
    • 133 篇 生物学
    • 70 篇 化学
    • 63 篇 统计学(可授理学、...
    • 44 篇 系统科学
  • 182 篇 管理学
    • 132 篇 管理科学与工程(可...
    • 56 篇 图书情报与档案管...
    • 29 篇 工商管理
  • 66 篇 医学
    • 50 篇 临床医学
    • 44 篇 基础医学(可授医学...
    • 31 篇 药学(可授医学、理...
  • 26 篇 教育学
  • 15 篇 农学
  • 14 篇 法学
  • 10 篇 经济学
  • 2 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 47 篇 feature extracti...
  • 28 篇 training
  • 23 篇 accuracy
  • 22 篇 semantics
  • 19 篇 deep learning
  • 18 篇 reinforcement le...
  • 16 篇 computational mo...
  • 15 篇 dna
  • 15 篇 algorithm design...
  • 15 篇 mathematical mod...
  • 14 篇 optimization
  • 13 篇 kinematics
  • 12 篇 face recognition
  • 12 篇 visualization
  • 12 篇 robustness
  • 11 篇 machine learning
  • 11 篇 principal compon...
  • 10 篇 task analysis
  • 10 篇 three-dimensiona...
  • 10 篇 image segmentati...

机构

  • 139 篇 tianjin key labo...
  • 104 篇 national demonst...
  • 55 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 31 篇 school of comput...
  • 31 篇 tianjin key labo...
  • 29 篇 national demonst...
  • 27 篇 anhui province k...
  • 25 篇 state key labora...
  • 24 篇 school of mechan...
  • 23 篇 school of comput...
  • 23 篇 university of ch...
  • 21 篇 key laboratory o...
  • 18 篇 tianjin universi...
  • 17 篇 hubei key labora...
  • 17 篇 anhui province k...
  • 17 篇 key laboratory o...
  • 16 篇 school of mechan...
  • 16 篇 state key labora...
  • 15 篇 tianjin universi...

作者

  • 92 篇 zhang qiang
  • 66 篇 qiang zhang
  • 57 篇 wei xiaopeng
  • 39 篇 fuji ren
  • 34 篇 xiaopeng wei
  • 26 篇 zhou changjun
  • 25 篇 changjun zhou
  • 24 篇 min hu
  • 23 篇 ren fuji
  • 23 篇 wang bin
  • 20 篇 jun liu
  • 18 篇 zheng qingchun
  • 18 篇 zhou dongsheng
  • 17 篇 zhou shihua
  • 17 篇 hu min
  • 17 篇 xiaohua wang
  • 16 篇 liu zhenzhong
  • 16 篇 zhu peihao
  • 15 篇 bin wang
  • 15 篇 ma wenpeng

语言

  • 1,187 篇 英文
  • 102 篇 其他
  • 30 篇 中文
检索条件"机构=Key Laboratory of advanced Design and Intelligent Computing"
1315 条 记 录,以下是1041-1050 订阅
Molten steel temperature prediction model based on bootstrap Feature Subsets Ensemble Regression Trees
收藏 引用
Knowledge-Based Systems 2016年 101卷 48-59页
作者: Xiaojun Wang Ping Yuan Zhizhong Mao Mingshuang You Key Laboratory of Advanced Design and Intelligent Computing (Dalian University) Ministry of Education Dalian 116622 China Institute of Automatization Northeastern University Shenyang 110004 China
Molten steel temperature prediction is important in Ladle Furnace (LF). Most of the existing temperature models have been built on small-scale data. The accuracy and the generalization of these models cannot satisfy i... 详细信息
来源: 评论
Precessing jet nozzle connecting to a spinning black hole in M87
arXiv
收藏 引用
arXiv 2023年
作者: Cui, Yuzhu Hada, Kazuhiro Kawashima, Tomohisa Kino, Motoki Lin, Weikang Mizuno, Yosuke Ro, Hyunwook Honma, Mareki Yi, Kunwoo Yu, Jintao Park, Jongho Jiang, Wu Shen, Zhiqiang Kravchenko, Evgeniya Algaba, Juan-Carlos Cheng, Xiaopeng Cho, Ilje Giovannini, Gabriele Giroletti, Marcello Jung, Taehyun Lu, Ru-Sen Niinuma, Kotaro Oh, Junghwan Ohsuga, Ken Sawada-Satoh, Satoko Sohn, Bong Won Takahashi, Hiroyuki R. Takamura, Mieko Tazaki, Fumie Trippe, Sascha Wajima, Kiyoaki Akiyama, Kazunori An, Tao Asada, Keiichi Buttaccio, Salvatore Byun, Do-Young Cui, Lang Hagiwara, Yoshiaki Hirota, Tomoya Hodgson, Jeffrey Kawaguchi, Noriyuki Kim, Jae-Young Lee, Sang-Sung Lee, Jee Won Lee, Jeong Ae Maccaferri, Giuseppe Melis, Andrea Melnikov, Alexey Migoni, Carlo Oh, Se-Jin Sugiyama, Koichiro Wang, Xuezheng Zhang, Yingkang Chen, Zhong Hwang, Ju-Yeon Jung, Dong-Kyu Kim, Hyo-Ryoung Kim, Jeong-Sook Kobayashi, Hideyuki Li, Bin Li, Guanghui Li, Xiaofei Liu, Zhiyong Liu, Qinghui Liu, Xiang Oh, Chung-Sik Oyama, Tomoaki Roh, Duk-Gyoo Wang, Jinqing Wang, Na Wang, Shiqiang Xia, Bo Yan, Hao Yeom, Jae-Hwan Yonekura, Yoshinori Yuan, Jianping Zhang, Hua Zhao, Rongbing Zhong, Weiye Research Center for Intelligent Computing Platforms Zhejiang Laboratory Hangzhou311100 China Tsung-Dao Lee Institute Shanghai Jiao Tong University 520 Shengrong Road Shanghai201210 China Astronomical Science Program The Graduate University for Advanced Studies SOKENDAI 2-21-1 Osawa Mitaka Tokyo181-8588 Japan Mizusawa VLBI Observatory National Astronomical Observatory of Japan 2-12 Hoshigaoka Mizusawa Iwate Oshu023-0861 Japan Institute for Cosmic Ray Research The University of Tokyo 5-1-5 Kashiwanoha Chiba Kashiwa277-8582 Japan Kogakuin University of Technology & Engineering Academic Support Center 2665-1 Nakano-machi Hachioji Tokyo192-0015 Japan South-Western Institute For Astronomy Research Yunnan University Kunming650500 China School of Physics and Astronomy Shanghai Jiao Tong University Shanghai200240 China Institut für Theoretische Physik Goethe-Universität Frankfurt Max-von-Laue-Straße 1 Frankfurt am MainD-60438 Germany Korea Astronomy & Space Science Institute Daedeokdae-ro 776 Yuseong-gu Daejeon34055 Korea Republic of Department of Astronomy Yonsei University Yonsei-ro 50 Seodaemun-gu Seoul03722 Korea Republic of Department of Astronomy Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo113-0033 Japan Department of Physics and Astronomy Seoul National University Gwanak-gu Seoul08826 Korea Republic of Department of Information Countermeasure Air Force Early Warning Academy Wuhan430019 China Institute of Astronomy and Astrophysics Academia Sinica HiloHI96720 United States Shanghai Astronomical Observatory Chinese Academy of Sciences 80 Nandan Road Shanghai200030 China Key Laboratory of Radio Astronomy Chinese Academy of Sciences Beijing100101 China Moscow Institute of Physics and Technology Dolgoprudny Institutsky per. 9 Moscow141700 Russia Lebedev Physical Institute The Russian Academy of Sciences Leninsky prospekt 53 Moscow119991 Russia Department of Physics Faculty of Science U
The nearby radio galaxy M87 offers a unique opportunity to explore the connections between the central supermassive black hole and relativistic jets. Previous studies of the inner region of M87 revealed a wide opening... 详细信息
来源: 评论
Neural network for heterogeneous annotations
Neural network for heterogeneous annotations
收藏 引用
2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016
作者: Chen, Hongshen Zhang, Yue Liu, Qun Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Singapore University of Technology and Design Singapore ADAPT Centre School of Computing Dublin City University Ireland
Multiple treebanks annotated under heterogeneous standards give rise to the research question of best utilizing multiple resources for improving statistical models. Prior research has focused on discrete models, lever... 详细信息
来源: 评论
A micro-genetic algorithm for DNA encoding sequences design
A micro-genetic algorithm for DNA encoding sequences design
收藏 引用
IEEE International Conference on Control Science and Systems Engineering (CCSSE)
作者: Xinmei Peng Xuedong Zheng Bin Wang Changjun Zhou Qiang Zhang Key Laboratory of Advanced Design and Intelligent Computing Ministry of Education Dalian University Dalian P. R. China
Aiming at DNA encoding sequences design, a micro-genetic algorithm (MGA) is proposed by introducing a sharing function based on similarity and H-measure of DNA sequences. In the algorithm, six design criteria are adop... 详细信息
来源: 评论
A throughput aware with collision-free MAC for wireless LANs
收藏 引用
Science China(Information Sciences) 2016年 第2期59卷 240-242页
作者: Tingrui PEI Yafeng DENG Zhetao LI Gengming ZHU Gaofeng PAN Youngjune CHOI Hiroo SEKIYA College of Information Engineering Xiangtan University Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education Xiangtan University School of Computer Science & Engineering Hunan University of Science and Technology School of Electronic and Information Engineering Southwest University Department of Information and Computer Engineering Ajou University Graduate School of Advanced Integration Science Chiba University
Dear editor,The Carrier Sense Multiple Access with Collision Avoidance(CSMA/CA)hybrid with the resource reservation approach from Time Division Multiple Address(TDMA)has been emerged as a promising method to solve col... 详细信息
来源: 评论
Finite Element Analysis on Loosen Teeth using Fibrous Periodontal Splint Restoration
收藏 引用
IOP Conference Series. Materials Science and Engineering 2018年 第1期417卷 012038-012038页
作者: Ding, Chengshui Yang, Song Qiu, Lulu Zhang, Chunqiu Shi, Xue Li, Xinyue Tianjin Key Laboratory of the Design Intelligent Control of the Advanced Mechatronical System National Demonstration Center for Experimental Mechanical and Electrical Engineering Education School of Mechanical Engineering Tianjin University of Technology Tianjin 300384 China Periodontitis Department Tianjin Stomatological Hospital Tianjin 300384 China
Objective To investigate the effect of fibre periodontal splint restoration on mandibular anterior teeth displacement and periodontal membrane stress. Methods Micro-CT scanning technology, combined with Mimics, Geomag...
来源: 评论
Identification of pre-microRNAs by characterizing their sequence order evolution information and secondary structure graphs
收藏 引用
BMC bioinformatics 2018年 第Suppl 19期19卷 521页
作者: Yuanlin Ma Zuguo Yu Guosheng Han Jinyan Li Vo Anh Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering Xiangtan University Hunan 411105 China. Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering Xiangtan University Hunan 411105 China. yuzuguo@***. School of Electrical Engineering and Computer Science Queensland University of Technology GPO Box 2434 Brisbane Q4001 Australia. yuzuguo@***. Advanced Analytics Institute Faculty of Engineering & IT University of Technology Sydney P.O Box 123 Broadway NSW 2007 Australia. School of Mathematical Sciences Queensland University of Technology GPO Box 2434 Brisbane Q4001 Australia.
BACKGROUND:Distinction between pre-microRNAs (precursor microRNAs) and length-similar pseudo pre-microRNAs can reveal more about the regulatory mechanism of RNA biological processes. Machine learning techniques have b... 详细信息
来源: 评论
Joint product numerical range and geometry of reduced density matrices
收藏 引用
Science China(Physics,Mechanics & Astronomy) 2017年 第2期60卷 9-17页
作者: Jianxin Chen Cheng Guo Zhengfeng Ji Yiu-Tung Poon Nengkun YU Bei Zeng Jie Zhou Joint Center for Quantum Information and Computer Science University of Maryland College Park 20740 USA Institute for Advanced Study Tsinghua University Beijing 100084 China Centre for Quantum Computation & Intelligent Systems School of Software Faculty of Engineering and Information Technology University of Technology Sydney Sydney 2007 Australia State Key Laboratory of Computer Science.Institute of Software Chinese Academy of Sciences Beijing 100084 China Department of Mathematics Iowa State University Ames 50011-2140 USA Institute for Quantum Computing University of Waterloo Waterloo N2L 3G1 Canada Department of Mathematics & Statistics University of Guelph Guelph N1G 2 W1 Canada Perimeter Institute for Theoretical Physics Waterloo N2L 2Y5 Canada
The reduced density matrices of a many-body quantum system form a convex set, whose three-dimensional projection is convex in R3. The boundary of may exhibit nontrivial geometry, in particular ruled surfaces. T... 详细信息
来源: 评论
Author Correction: BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2024年 第10期21卷 1959页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
来源: 评论
Experimental Study On The Identification Model Of Dynamic Milling Force Coefficient
Experimental Study On The Identification Model Of Dynamic Mi...
收藏 引用
2016 4th International Conference on Machinery,Materials and computing Technology(ICMMCT 2016)
作者: Xinghua Niu Tianding Wang Tiemin Zhao Qianyou Huang Tianjin University of Technology Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System
The identification model of milling force coefficient is established using the model of dynamic milling force and the regression analysis of the milling force experiment data. On the basis of the existing milling forc... 详细信息
来源: 评论