咨询与建议

限定检索结果

文献类型

  • 3,054 篇 期刊文献
  • 2,638 篇 会议
  • 4 册 图书

馆藏范围

  • 5,696 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,722 篇 工学
    • 2,390 篇 计算机科学与技术...
    • 1,946 篇 软件工程
    • 852 篇 信息与通信工程
    • 471 篇 控制科学与工程
    • 445 篇 电气工程
    • 443 篇 生物工程
    • 326 篇 电子科学与技术(可...
    • 299 篇 化学工程与技术
    • 258 篇 生物医学工程(可授...
    • 252 篇 机械工程
    • 229 篇 光学工程
    • 180 篇 材料科学与工程(可...
    • 166 篇 动力工程及工程热...
    • 163 篇 交通运输工程
    • 145 篇 仪器科学与技术
    • 142 篇 建筑学
    • 135 篇 土木工程
  • 2,074 篇 理学
    • 1,018 篇 数学
    • 534 篇 物理学
    • 525 篇 生物学
    • 334 篇 统计学(可授理学、...
    • 308 篇 化学
    • 148 篇 系统科学
  • 1,054 篇 管理学
    • 621 篇 管理科学与工程(可...
    • 482 篇 图书情报与档案管...
    • 223 篇 工商管理
  • 299 篇 医学
    • 243 篇 临床医学
    • 162 篇 基础医学(可授医学...
  • 174 篇 法学
    • 141 篇 社会学
  • 150 篇 农学
  • 112 篇 经济学
    • 112 篇 应用经济学
  • 42 篇 教育学
  • 16 篇 文学
  • 13 篇 军事学
  • 7 篇 艺术学
  • 1 篇 历史学

主题

  • 176 篇 semantics
  • 149 篇 feature extracti...
  • 140 篇 deep learning
  • 133 篇 training
  • 92 篇 computational mo...
  • 82 篇 data models
  • 78 篇 machine learning
  • 74 篇 convolution
  • 70 篇 data mining
  • 69 篇 predictive model...
  • 62 篇 neural networks
  • 61 篇 accuracy
  • 56 篇 object detection
  • 55 篇 visualization
  • 52 篇 big data
  • 52 篇 graph neural net...
  • 50 篇 optimization
  • 49 篇 task analysis
  • 48 篇 contrastive lear...
  • 48 篇 forecasting

机构

  • 165 篇 school of inform...
  • 147 篇 key laboratory o...
  • 132 篇 school of econom...
  • 97 篇 state key labora...
  • 94 篇 school of comput...
  • 79 篇 fujian provincia...
  • 76 篇 henan key labora...
  • 73 篇 college of big d...
  • 73 篇 school of comput...
  • 73 篇 research center ...
  • 72 篇 school of comput...
  • 69 篇 guangdong key la...
  • 69 篇 university of ch...
  • 60 篇 hubei key labora...
  • 53 篇 shandong provinc...
  • 53 篇 shenzhen researc...
  • 51 篇 key laboratory o...
  • 50 篇 school of inform...
  • 49 篇 national enginee...
  • 48 篇 peng cheng labor...

作者

  • 45 篇 shi yong
  • 41 篇 zhang rui
  • 40 篇 yong shi
  • 40 篇 chen hong
  • 38 篇 chang kuo-chi
  • 37 篇 wu xindong
  • 37 篇 pan jeng-shyang
  • 33 篇 liu yang
  • 33 篇 wang meng
  • 32 篇 xue xingsi
  • 32 篇 du xiaoyong
  • 32 篇 zhang jing
  • 31 篇 liu jun
  • 30 篇 li cuiping
  • 29 篇 wen ji-rong
  • 29 篇 huang qingming
  • 28 篇 chu kai-chun
  • 28 篇 xindong wu
  • 25 篇 hong chen
  • 24 篇 niyato dusit

语言

  • 5,182 篇 英文
  • 404 篇 其他
  • 121 篇 中文
  • 3 篇 德文
  • 3 篇 法文
检索条件"机构=Key Laboratory of knowledge Engineering with Big Data"
5696 条 记 录,以下是4751-4760 订阅
排序:
Learning personalized attribute preference via multi-task auc optimization
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Zhiyong Xu, Qianqian Cao, Xiaochun Huang, Qingming SKLOIS Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management CAS Beijing China
Traditionally, most of the existing attribute learning methods are trained based on the consensus of annotations aggregated from a limited number of annotators. However, the consensus might fail in settings, especiall... 详细信息
来源: 评论
Software Defect Distribution Prediction Model Based on NPE-SVM
收藏 引用
China Communications 2018年 第5期15卷 173-182页
作者: Hua Wei Chun Shan Changzhen Hu Huizhong Sun Min Lei School of Computer Science and Technology Beijing Institute of TechnologyBeijing 100081China China Information Technology Security Evaluation Center Beijing 100085China Beijing Key Laboratory of Software Security Engineering Technology School of SoftwareBeijing Institute of TechnologyBeijing 100081China Information Security Center Beijing University of Posts and TelecommunicationsBeijing 100876China Guizhou University Guizhou Provincial Key Laboratory of Public Big DataGuizhou Guiyang 550025China
During the prediction of software defect distribution, the data redundancy caused by the multi-dimensional measurement will lead to the decrease of prediction accuracy. In order to solve this problem, this paper propo... 详细信息
来源: 评论
Particle number conserving BCS approach in the relativistic mean field model and its application to ^32-74Ca
收藏 引用
Chinese Physics C 2018年 第11期42卷 63-71页
作者: Rong An Lisheng Geng Shisheng Zhang Lang Liu School of Physics and Nuclear Energy Engineering Beihang UniversityBeijing 100191China School of Physics and Nuclear Energy Engineering & Beijing Key Laboratory of Advanced Nuclear Materials and Physics Beihang University Beijing 100191China Beijing Advanced Innovation Center for Big Data-based Precision MedicineBeihang UniversityBeijing 100191China School of Science Jiangnan UniversityWuxi 214122China
A fixed particle number BCS (FBCS) approach is formulated in the relativistic mean field (RMF) model. It is shown that the RMF+FBCS model obtained can describe the weak pairing limit. We calculate the ground-stat... 详细信息
来源: 评论
The dynamical relationship between capital market and macroeconomy: based on dynamic Bayesian network
收藏 引用
Procedia Computer Science 2019年 162卷 46-52页
作者: Yue Liu Yijing Wang Guihuan Zheng Jue Wang Kun Guo School of Economics and Management University of Chinese Academy of Sciences Beijing and 100190 China Research Center on Fictitious Economy & Data Science Chinese Academy of Sciences Beijing and 100190 China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing and 100190 China China Institute Of Finance And Capital Markets China Securities Regulatory Commission Beijing and 100032 China The Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing and 100190 China
The stock market volatility will be affected by many economic factors. On the contrary, the stock market will also influence the formulation of the economy and policy. It will be very useful if a qualitative structure... 详细信息
来源: 评论
Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
收藏 引用
Chinese Physics B 2017年 第7期26卷 39-48页
作者: 张翔 王金环 杨德东 徐勇 School of Sciences Hebei Province Key Laboratory of Big Data Calculation Hebei University of Technology School of Control Science and Engineering Hebei University of Technology
We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers ar... 详细信息
来源: 评论
Distortion-adaptive salient object detection in 360◦ omnidirectional images
arXiv
收藏 引用
arXiv 2019年
作者: Li, Jia Su, Jinming Xia, Changqun Tian, Yonghong State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing100191 China Beijing Adavanced Innovation Center for Big Data and Brain Computing Beihang University China National Engineering Laboratory for Video Technology School of Electronics Engineering and Computer Science Peking University Beijing China Peng Cheng Laboratory Shenzhen518000 China
Image-based salient object detection (SOD) has been extensively explored in the past decades. However, SOD on 360◦ omnidirectional images is less studied owing to the lack of datasets with pixel-level annotations. Tow... 详细信息
来源: 评论
Synchronization of Complex Dynamical Networks with Stochastic Coupling via PI Control
Synchronization of Complex Dynamical Networks with Stochasti...
收藏 引用
第三十八届中国控制会议
作者: Haibo Gu Kexin Liu Jinhu Lü Key Laboratory of Systems and Control Academy of Mathematics and Systems Science Chinese Academy of Sciences School of Mathematical Sciences University of Chinese Academy of Sciences School of Automation Science and Electrical Engineering State Key Laboratory of Software Development Environment and Beijing Advanced Innovation Center for Big Data and Brain Machine Intelligence Beihang University
With the development of sensor networks in the past two decades, synchronization of complex dynamical networks has received an increasing attention and has been widely studied both in theoretical research and in pract... 详细信息
来源: 评论
Study on sensitivity and selectivity of three-stage current protection in distribution network with distributed generation
收藏 引用
IOP Conference Series: Earth and Environmental Science 2020年 第1期467卷
作者: Jing Gong Beijing University of Civil Engineering and Architecture Beijing 100044 China Scholarship Council (***) the Scientific Research Fund of BUCEA Beijing Key Laboratory Researching on Intelligent Processing of Building Big Data
The connection of DG (Distributed Generation) changes the topology of distribution network, which will lead to the change of current detected by relay protection, and the sensitivity and scope of protection will be af...
来源: 评论
Individual Dairy Cattle Recognition Based on Deep Convolutional Neural Network
收藏 引用
Journal of Donghua University(English Edition) 2018年 第2期35卷 107-112页
作者: ZHANG Mandun SHAN Xinyuan YU Jinsu GUO Yingchun LI Ruiwen XU Mingquan School of Computer Science and Engineering Hebei University of Technology Tianjin 300401 China Hebei Province Key Laboratory of Big Data Calculation Tianfin 300401 China Traditional Chinese Veterinary Medicine College Agricultural University of Hebei Baoding 071000 China
Image based individual dairy cattle recognition has gained much attention recently. In order to further improve the accuracy of individual dairy cattle recognition, an algorithm based on deep convolutional neural netw... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论