Cross-project defect prediction (CPDP) utilizes the existing labeled data in the source project to assist with the prediction of unlabeled projects in the target dataset, which effectively improves the prediction perf...
详细信息
Cross-project defect prediction (CPDP) utilizes the existing labeled data in the source project to assist with the prediction of unlabeled projects in the target dataset, which effectively improves the prediction performance and has become a research hotspot in software engineering. At present, CPDP can be categorized into homogeneous cross-project defect prediction and heterogeneous cross-project defect prediction (HDP), in which HDP doesn’t require that the source project and the target project have the same feature space, thus, it is more widely used in the actual CPDP. Most of current HDP methods map the original features to the latent feature space and reduce the inter-project variation by transferring domain-independent features, but the transferring process ignores the use of domain-related features, which affects the prediction performance of the model. Moreover, the mapped latent features are not conducive to the model’s interpretability. Based on these, this paper proposes a heterogeneous defect prediction method based on feature disentanglement (FD-HDP). We disentangle the features using domain-related and domain-independent feature extractors, respectively, to improve the interpretability of the model by maximizing the domain adversarial loss during training and guiding the feature extractors to produce accurate domain-related and domain-independent features. The weighted sum of the prediction results from domain-related and domain-independent predictors is used as the final prediction result of the project during the prediction process, which realizes the combination of domain-independent and domain-related features and effectively improves the prediction performance. In this paper, we conducted experiments using four publicly available defect datasets to construct heterogeneous scenarios. The results demonstrate that the FD-HDP model shows significant advantages over state-of-the-art methods in six metrics.
This book constitutes the refereed proceedings of the 7th International Conference on knowledge Science, engineering and Management, KSEM 2014, held in Sibiu, Romania, in October 2014. The 30 revised full papers prese...
详细信息
ISBN:
(数字)9783319120966
ISBN:
(纸本)9783319120959
This book constitutes the refereed proceedings of the 7th International Conference on knowledge Science, engineering and Management, KSEM 2014, held in Sibiu, Romania, in October 2014. The 30 revised full papers presented together with 5 short papers and 3 keynotes were carefully selected and reviewed from 77 submissions. The papers are organized in topical sections on formal semantics; content and document analysis; concept and lexical analysis; clustering and classification; metamodeling and conceptual modeling; enterprise knowledge; knowledge discovery and retrieval; formal knowledge processing; ontology engineering and management; knowledge management; and hybrid knowledge systems.
knowledge Graphs (KGs) often suffer from incompleteness and this issue motivates the task of knowledge Graph Completion (KGC). Traditional KGC models mainly concentrate on static KGs with a fixed set of entities and r...
详细信息
knowledge Graphs (KGs) often suffer from incompleteness and this issue motivates the task of knowledge Graph Completion (KGC). Traditional KGC models mainly concentrate on static KGs with a fixed set of entities and relations, or dynamic KGs with temporal characteristics, faltering in their generalization to constantly evolving KGs with possible irregular entity drift. Thus, in this paper, we propose a novel link prediction model based on the embedding representation to handle the incompleteness of KGs with entity drift, termed as DCEL. Unlike traditional link prediction, DCEL could generate precise embeddings for drifted entity without imposing any regular temporal characteristic. The drifted entity is added into the KG with its links to the existing entity predicted in an incremental fashion with no requirement to retrain the whole KG for computational efficiency. In terms of DCEL model, it fully takes advantages of unstructured textual description, and is composed of four modules, namely MRC (Machine Reading Comprehension), RCAA (Relation Constraint Attentive Aggregator), RSA (Relation Specific Alignment) and RCEO (Relation Constraint Embedding Optimization). Specifically, the MRC module is first employed to extract short texts from long and redundant descriptions. Then, RCAA is used to aggregate the embeddings of textual description of drifted entity and the pre-trained word embeddings learned from corpus to a single text-based entity embedding while shielding the impact of noise and irrelevant information. After that, RSA is applied to align the text-based entity embedding to graph-based space to obtain the corresponding graph-based entity embedding, and then the learned embeddings are fed into the gate structure to be optimized based on the RCEO to improve the accuracy of representation learning. Finally, the graph-based model TransE is used to perform link prediction for drifted entity. Extensive experiments conducted on benchmark datasets in terms of evaluat
作者:
Lisi WeiLibo ZhaoXiaoli ZhangCollege of Computer Science and Technology
Jilin University China College of Artificial Intelligence and Big Data Hulunbuir University China and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China College of Computer Science and Technology
Jilin University China and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China
Due to the limitations of imaging sensors, obtaining a medical image that simultaneously captures both functional metabolic data and structural tissue details remains a significant challenge in clinical diagnosis. To ...
详细信息
Due to the limitations of imaging sensors, obtaining a medical image that simultaneously captures both functional metabolic data and structural tissue details remains a significant challenge in clinical diagnosis. To address this, Multimodal Medical Image Fusion (MMIF) has emerged as an effective technique for integrating complementary information from multimodal source images, such as CT, PET, and SPECT, which is critical for providing a comprehensive understanding of both anatomical and functional aspects of the human body. One of the key challenges in MMIF is how to exchange and aggregate this multimodal information. This paper rethinks MMIF by addressing the harmony of modality gaps and proposes a novel Modality-Aware Interaction Network (MAINet), which leverages cross-modal feature interaction and progressively fuses multiple features in graph space. Specifically, we introduce two key modules: the Cascade Modality Interaction (CMI) module and the Dual-Graph Learning (DGL) module. The CMI module, integrated within a multi-scale encoder with triple branches, facilitates complementary multimodal feature learning and provides beneficial feedback to enhance discriminative feature learning across modalities. In the decoding process, the DGL module aggregates hierarchical features in two distinct graph spaces, enabling global feature interactions. Moreover, the DGL module incorporates a bottom-up guidance mechanism, where deeper semantic features guide the learning of shallower detail features, thus improving the fusion process by enhancing both scale diversity and modality awareness for visual fidelity results. Experimental results on medical image datasets demonstrate the superiority of the proposed method over existing fusion approaches in both subjective and objective evaluations. We also validated the performance of the proposed method in applications such as infrared-visible image fusion and medical image segmentation.
暂无评论