咨询与建议

限定检索结果

文献类型

  • 355 篇 会议
  • 253 篇 期刊文献

馆藏范围

  • 608 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 397 篇 工学
    • 321 篇 计算机科学与技术...
    • 262 篇 软件工程
    • 101 篇 信息与通信工程
    • 41 篇 控制科学与工程
    • 36 篇 生物工程
    • 26 篇 机械工程
    • 23 篇 生物医学工程(可授...
    • 20 篇 电气工程
    • 19 篇 电子科学与技术(可...
    • 16 篇 光学工程
    • 16 篇 仪器科学与技术
    • 14 篇 网络空间安全
    • 12 篇 动力工程及工程热...
    • 10 篇 交通运输工程
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 化学工程与技术
  • 161 篇 理学
    • 104 篇 数学
    • 36 篇 生物学
    • 25 篇 统计学(可授理学、...
    • 22 篇 物理学
    • 13 篇 系统科学
    • 9 篇 化学
  • 132 篇 管理学
    • 70 篇 管理科学与工程(可...
    • 63 篇 图书情报与档案管...
    • 24 篇 工商管理
  • 16 篇 医学
    • 14 篇 临床医学
    • 11 篇 基础医学(可授医学...
  • 15 篇 法学
    • 14 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 6 篇 农学
  • 3 篇 文学
  • 3 篇 艺术学
  • 2 篇 军事学
  • 1 篇 教育学

主题

  • 31 篇 semantics
  • 19 篇 training
  • 16 篇 routing
  • 16 篇 machine learning
  • 16 篇 protocols
  • 15 篇 feature extracti...
  • 13 篇 clustering algor...
  • 11 篇 privacy
  • 10 篇 deep learning
  • 10 篇 network topology
  • 10 篇 educational inst...
  • 10 篇 estimation
  • 9 篇 peer to peer com...
  • 9 篇 big data
  • 9 篇 optimization
  • 9 篇 contrastive lear...
  • 9 篇 wireless sensor ...
  • 9 篇 benchmark testin...
  • 9 篇 accuracy
  • 9 篇 cloud computing

机构

  • 162 篇 school of comput...
  • 86 篇 key laboratory o...
  • 61 篇 key laboratory o...
  • 40 篇 school of comput...
  • 39 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 34 篇 school of cyber ...
  • 19 篇 key laboratory o...
  • 15 篇 ministry of educ...
  • 12 篇 school of cyber ...
  • 11 篇 school of comput...
  • 10 篇 guangxi collabor...
  • 10 篇 the school of co...
  • 10 篇 college of softw...
  • 9 篇 southeast univer...
  • 9 篇 purple mountain ...
  • 9 篇 national key lab...
  • 8 篇 the key laborato...
  • 8 篇 moe key laborato...
  • 8 篇 department of co...

作者

  • 36 篇 zhou deyu
  • 32 篇 zhang min-ling
  • 28 篇 min-ling zhang
  • 21 篇 guang cheng
  • 18 篇 geng xin
  • 18 篇 wang yun
  • 17 篇 xiaoping li
  • 17 篇 he yulan
  • 15 篇 sanfeng zhang
  • 13 篇 cheng guang
  • 12 篇 shu huazhong
  • 12 篇 qi guilin
  • 11 篇 jia yuheng
  • 11 篇 li xiaoping
  • 11 篇 kong youyong
  • 10 篇 wei tong
  • 10 篇 yang guanyu
  • 10 篇 yang peng
  • 9 篇 xiaoyan hu
  • 9 篇 gao zhiqiang

语言

  • 481 篇 英文
  • 101 篇 其他
  • 29 篇 中文
检索条件"机构=Key Library of Computer Network and Information Integration"
608 条 记 录,以下是271-280 订阅
排序:
A quantitative framework for network resilience evaluation using dynamic bayesian network
arXiv
收藏 引用
arXiv 2021年
作者: Jiang, Shanqing Yang, Lin Cheng, Guang Gao, Xianming Feng, Tao Zhou, Yuyang School of Cyber Science and Engineering Southeast University Nanjing China National Key Laboratory of Science and Technology on Information System Security Beijing China Key Laboratory of Computer Network and Information Integration Ministry of Education Nanjing China
Measuring and evaluating network resilience has become an important aspect since the network is vulnerable to both uncertain disturbances and malicious attacks. networked systems are often composed of many dynamic com... 详细信息
来源: 评论
Disentangled High Quality Salient Object Detection
Disentangled High Quality Salient Object Detection
收藏 引用
International Conference on computer Vision (ICCV)
作者: Lv Tang Bo Li Yijie Zhong Shouhong Ding Mofei Song Youtu Lab Tencent Shanghai China The School of Computer Science and Engineering Southeast University Nanjing China The Key Lab of Computer Network and Information Integration (Ministry of Education) Southeast University Nanjing China
Aiming at discovering and locating most distinctive objects from visual scenes, salient object detection (SOD) plays an essential role in various computer vision systems. Coming to the era of high resolution, SOD meth... 详细信息
来源: 评论
DimSum: Disentangling representation with automatically generated multi-category summary templates for fine-grained opinion summarization
收藏 引用
Expert Systems with Applications 2025年 290卷
作者: Yanyue Zhang Yilong Lai Zhenglin Wang Deyu Zhou School of Computer Science and Engineering Ministry of Education Key Laboratory of Computer Network and Information Integration Southeast University No. 2 Southeast University Road Jiangning District Nanjing Jiangsu Province 210000 China
Supervised opinion summarization often employs a select-then-generate framework, while noticeable templated phenomena are observed in the generated summaries, indicating the inability to produce a fine-grained summary...
来源: 评论
Retrieve, program, repeat: Complex knowledge base question answering via alternate meta-learning  29
Retrieve, program, repeat: Complex knowledge base question a...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Hua, Yuncheng Li, Yuan-Fang Haffari, Gholamreza Qi, Guilin Wu, Wei School of Computer Science and Engineering Southeast University Nanjing China Faculty of Information Technology Monash University Melbourne Australia Southeast University Monash University Joint Research Institute Suzhou China Key Laboratory of Computer Network and Information Integration Southeast University China
A compelling approach to complex question answering is to convert the question to a sequence of actions, which can then be executed on the knowledge base to yield the answer, aka the programmer-interpreter approach. U... 详细信息
来源: 评论
A Semi-Supervised Deep network Embedding Approach Based on the Neighborhood Structure
收藏 引用
Big Data Mining and Analytics 2019年 第3期2卷 205-216页
作者: Wenmao Wu Zhizhou Yu Jieyue He School of Computer Science and Engineering Southeast UniversityNanjing 211100China MOE Key Laboratory of Computer Network and Information Integration Southeast UniversityNanjing 211100China
network embedding is a very important task to represent the high-dimensional network in a lowdimensional vector space,which aims to capture and preserve the network *** existing network embedding methods are based on ... 详细信息
来源: 评论
Enhanced Practical Byzantine Fault Tolerance for Service Function Chain Deployment:Advancing Big Data Intelligence in Control Systems
收藏 引用
computers, Materials & Continua 2025年 第6期83卷 4393-4409页
作者: Peiying Zhang Yihong Yu Jing Liu ChongLv Lizhuang Tan Yulin Zhang Qingdao Institute of Software College of Computer Science and TechnologyChina University of Petroleum(East China)Qingdao266580China Shandong Key Laboratory of Intelligent Oil&Gas Industrial Software Qingdao266580China Library of Shanghai Lixin University of Accounting and Finance Shanghai201209China Key Laboratory of Computing Power Network and Information Security Ministry of EducationShandong Computer Science Center(National Supercomputer Center in Jinan)Qilu University of Technology(Shandong Academy of Sciences)Jinan250014China Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing Shandong Fundamental Research Center for Computer ScienceJinan250014China Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE Minzu University of ChinaBeijing100081China Key Laboratory of Intelligent Game Yangtze River Delta Research Institute of NPUTaicang215400China Key Laboratory of Education Informatization for Nationalities(Yunnan Normal University) Ministry of EducationKunming650092China
As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitati... 详细信息
来源: 评论
Finding the most reliable maximum flow in transport network  2nd
Finding the most reliable maximum flow in transport network
收藏 引用
2nd International Cognitive Cities Conference, IC3 2019
作者: Wang, Jie Cai, Wei Zhou, Sihai Liu, Yundi Liao, Weicheng Zhang, Baili School of Computer Science and Engineering Southeast University Nanjing211189 China Key Laboratory of Computer Network and Information Integration of Ministry of Education Nanjing China Research Center for Judicial Big Data Supreme Count of China Nanjing211189 China
This paper intends to solve the most reliable maximum flow problem (MRMF) on transport network. A subgraph path division algorithm (SPDA) is proposed to get the most reliable maximum flow distribution, which avoid the... 详细信息
来源: 评论
Differential Privacy Based on Data Provenance Publishing Method
收藏 引用
Jisuanji Xuebao/Chinese Journal of computers 2020年 第3期43卷 573-586页
作者: Ni, Wei-Wei Shen, Tao Yan, Dong Department of Computer Science and Engineering Southeast University Nanjing211189 China Key Laboratory of Computer Network and Information Integration in Southeast University Ministry of Education Nanjing211189 China
Data provenance describes the mechanism and process of data generation and evolution, which records information about the node module executions used to produce concrete data items, as well as those intermediate data ... 详细信息
来源: 评论
Accurate and Fast Detection of DDoS Attacks in High-Speed network with Asymmetric Routing
Accurate and Fast Detection of DDoS Attacks in High-Speed Ne...
收藏 引用
2021 IEEE Global Communications Conference (GLOBECOM)
作者: Hua Wu Tingzheng Chen Ziling Shao Guang Cheng Xiaoyan Hu School of Cyber Science and Engineering Southeast University Nanjing China Key Laboratory of Computer Network and Information Integration Ministry of Education Southeast University Nanjing China Purple Mountain Laboratories for Network and Communication Security Nanjing China
The existing DDoS attack detection methods based on a single monitoring point only consider symmetric routing scenarios, which may not be practical. Such schemes will produce high false positives when facing the asymm... 详细信息
来源: 评论
Variational Gaussian Topic Model with Invertible Neural Projections
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Rui Zhou, Deyu Xiong, Yuxuan Huang, Haiping School of Computer Science Nanjing University of Posts and Telecommunications China Key Laboratory of Computer Network and Information Integration School of Computer Science and Engineering Ministry of Education Southeast University China Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks Nanjing China
Neural topic models have triggered a surge of interest in extracting topics from text automatically since they avoid the sophisticated derivations in conventional topic models. However, scarce neural topic models inco... 详细信息
来源: 评论