咨询与建议

限定检索结果

文献类型

  • 355 篇 会议
  • 253 篇 期刊文献

馆藏范围

  • 608 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 397 篇 工学
    • 321 篇 计算机科学与技术...
    • 262 篇 软件工程
    • 101 篇 信息与通信工程
    • 41 篇 控制科学与工程
    • 36 篇 生物工程
    • 26 篇 机械工程
    • 23 篇 生物医学工程(可授...
    • 20 篇 电气工程
    • 19 篇 电子科学与技术(可...
    • 16 篇 光学工程
    • 16 篇 仪器科学与技术
    • 14 篇 网络空间安全
    • 12 篇 动力工程及工程热...
    • 10 篇 交通运输工程
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 化学工程与技术
  • 161 篇 理学
    • 104 篇 数学
    • 36 篇 生物学
    • 25 篇 统计学(可授理学、...
    • 22 篇 物理学
    • 13 篇 系统科学
    • 9 篇 化学
  • 132 篇 管理学
    • 70 篇 管理科学与工程(可...
    • 63 篇 图书情报与档案管...
    • 24 篇 工商管理
  • 16 篇 医学
    • 14 篇 临床医学
    • 11 篇 基础医学(可授医学...
  • 15 篇 法学
    • 14 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 6 篇 农学
  • 3 篇 文学
  • 3 篇 艺术学
  • 2 篇 军事学
  • 1 篇 教育学

主题

  • 31 篇 semantics
  • 19 篇 training
  • 16 篇 routing
  • 16 篇 machine learning
  • 16 篇 protocols
  • 15 篇 feature extracti...
  • 13 篇 clustering algor...
  • 11 篇 privacy
  • 10 篇 deep learning
  • 10 篇 network topology
  • 10 篇 educational inst...
  • 10 篇 estimation
  • 9 篇 peer to peer com...
  • 9 篇 big data
  • 9 篇 optimization
  • 9 篇 contrastive lear...
  • 9 篇 wireless sensor ...
  • 9 篇 benchmark testin...
  • 9 篇 accuracy
  • 9 篇 cloud computing

机构

  • 162 篇 school of comput...
  • 86 篇 key laboratory o...
  • 61 篇 key laboratory o...
  • 40 篇 school of comput...
  • 39 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 34 篇 school of cyber ...
  • 19 篇 key laboratory o...
  • 15 篇 ministry of educ...
  • 12 篇 school of cyber ...
  • 11 篇 school of comput...
  • 10 篇 guangxi collabor...
  • 10 篇 the school of co...
  • 10 篇 college of softw...
  • 9 篇 southeast univer...
  • 9 篇 purple mountain ...
  • 9 篇 national key lab...
  • 8 篇 the key laborato...
  • 8 篇 moe key laborato...
  • 8 篇 department of co...

作者

  • 36 篇 zhou deyu
  • 32 篇 zhang min-ling
  • 28 篇 min-ling zhang
  • 21 篇 guang cheng
  • 18 篇 geng xin
  • 18 篇 wang yun
  • 17 篇 xiaoping li
  • 17 篇 he yulan
  • 15 篇 sanfeng zhang
  • 13 篇 cheng guang
  • 12 篇 shu huazhong
  • 12 篇 qi guilin
  • 11 篇 jia yuheng
  • 11 篇 li xiaoping
  • 11 篇 kong youyong
  • 10 篇 wei tong
  • 10 篇 yang guanyu
  • 10 篇 yang peng
  • 9 篇 xiaoyan hu
  • 9 篇 gao zhiqiang

语言

  • 481 篇 英文
  • 101 篇 其他
  • 29 篇 中文
检索条件"机构=Key Library of Computer Network and Information Integration"
608 条 记 录,以下是81-90 订阅
排序:
Finformer: A Static-dynamic Spatiotemporal Framework for Stock Trend Prediction
Finformer: A Static-dynamic Spatiotemporal Framework for Sto...
收藏 引用
2023 IEEE International Conference on Big Data, BigData 2023
作者: Zu, Yi Mi, Jiacong Song, Lingning Lu, Shan He, Jieyue Southeast University School of Computer Science and Engineering Key Lab of Computer Network and Information Integration MOE Nanjing China Southeast University School of Software Engineering Nanjing China Nanjing Fenghuo Tiandi Communication Technology Co. Ltd Nanjing China
The core of quantitative investment lies in predicting future trends in stock prices. The future trend of a stock is closely related to the industry it belongs to and its relationship with other stocks. Although some ... 详细信息
来源: 评论
Early Prediction of Heart Disease via LSTM-XGBoost  23
Early Prediction of Heart Disease via LSTM-XGBoost
收藏 引用
9th International Conference on Computing and Artificial Intelligence, ICCAI 2023
作者: Zang, Xiaodong Du, Jin Song, Yuansheng School of Cyber Science and Engineering Qufu Normal University Key Laboratory of Computer Network and Information Integration Ministry of Education Southeast University Nanjing211189 China School of Cyber Science and Engineering Qufu Normal University China
With the development of information and technology, especially with the boom in big data, healthcare support systems are becoming much better. However, an early diagnosis is not an easy task because it is hard to find... 详细信息
来源: 评论
Fast Multi-Instance Partial-Label Learning  39
Fast Multi-Instance Partial-Label Learning
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Yang, Yin-Fang Tang, Wei Zhang, Min-Ling School of Computer Science and Engineering Southeast University Nanjing210096 China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China
Multi-instance partial-label learning (MIPL) is a paradigm where each training example is encapsulated as a multi-instance bag associated with the candidate label set, which includes one true label and several false p...
来源: 评论
Benchmarking Temporal Reasoning and Alignment Across Chinese Dynasties
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Zhenglin Wu, Jialong Li, Pengfei Jiang, Yong Zhou, Deyu School of Computer Science and Engineering Key Laboratory of Computer Network and Information Integration Ministry of Education Southeast University China Tongyi Lab Alibaba Group China
Temporal reasoning is fundamental to human cognition and is crucial for various real-world applications. While recent advances in Large Language Models have demonstrated promising capabilities in temporal reasoning, e... 详细信息
来源: 评论
Compositional metric learning for multi-label classification
收藏 引用
Frontiers of computer Science 2021年 第5期15卷 1-12页
作者: Yan-Ping SUN Min-Ling ZHANG School of Computer Science and Engineering Southeast UniversityNanjing 210096China Key Laboratory of Computer Network and Information Integration(Southeast University) Ministry of EducationChina Collaborative Innovation Center for Wireless Communications Technology Nanjing 211100China
Multi-label classification aims to assign a set of proper labels for each instance,where distance metric learning can help improve the generalization ability of instance-based multi-label classification *** multi-labe... 详细信息
来源: 评论
Calibration bottleneck: over-compressed representations are less calibratable  24
Calibration bottleneck: over-compressed representations are ...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Deng-Bao Wang Min-Ling Zhang School of Computer Science and Engineering Southeast University Nanjing China and Key Lab. of Computer Network and Information Integration (Southeast University) MOE China
Although deep neural networks have achieved remarkable success, they often exhibit a significant deficiency in reliable uncertainty calibration. This paper focus on model calibratability, which assesses how amenable a...
来源: 评论
Binary decomposition: a problem transformation perspective for open-set semi-supervised learning  24
Binary decomposition: a problem transformation perspective f...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Jun-Yi Hang Min-Ling Zhang School of Computer Science and Engineering Southeast University Nanjing China and Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China
Semi-supervised learning (SSL) is a classical machine learning paradigm dealing with labeled and unlabeled data. However, it often suffers performance degradation in real-world open-set scenarios, where unlabeled data...
来源: 评论
RankMatch: A Novel Approach to Semi-Supervised Label Distribution Learning Leveraging Inter-label Correlations
arXiv
收藏 引用
arXiv 2023年
作者: Kou, Zhiqiang Xie, Yucheng Wang, Jing Jia, Yuheng Shi, Boyu Geng, Xin MOE Key Laboratory of Computer Network and Information Integration School of Computer Science and Engineering Southeast University Nanjing China
This paper introduces RankMatch, an innovative approach for Semi-Supervised Label Distribution Learning (SSLDL). Addressing the challenge of limited labeled data, RankMatch effectively utilizes a small number of label... 详细信息
来源: 评论
PROMIPL: A Probabilistic Generative Model for Multi-Instance Partial-Label Learning
PROMIPL: A Probabilistic Generative Model for Multi-Instance...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Yin-Fang Yang Wei Tang Min-Ling Zhang School of Computer Science and Engineering Southeast University Nanjing China Key Laboratory of Computer Network Information Integration (Southeast University) Ministry of Education China
Multi-instance partial-label learning (MIPL) tackles scenarios where each training sample is represented as a multiinstance bag associated with a candidate label set. This set contains one true label and several false... 详细信息
来源: 评论
Joint Optimization of UAV Deployment and Task Computation Offloading Decision in UAV-assisted Edge Computing network
Joint Optimization of UAV Deployment and Task Computation Of...
收藏 引用
IEEE International Conference on High Performance Computing and Communications (HPCC)
作者: Yichuan Liu Jinbin Tu Yun Wang Key Lab of Computer Network and Information Integration MOE School of Computer Science and Engineering Southeast University Nanjing China
The UAVs' deployment decision and task computation offloading decision in the UAV-assisted edge computing network significantly impact the operating efficiency of edge network. On the basis of this, the Optimizati...
来源: 评论