Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydr...
详细信息
Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydroxy acids with high activity under visible-light irradiation and mild conditions, using atomic ruthenium-promoted cadmium sulfide (Ru 1 /CdS). On a metal basis, the optimized Ru 1 /CdS exhibits a maximal alanine formation rate of 26.0 mol Ala ⋅ g Ru −1 ⋅ h −1 , which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru 1 /CdS to the facilitated charge separation and O−H bond dissociation of the α -hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique “double activation” mechanism of both the CH−OH and CH 3 −CH−OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.
Biofuel production can alleviate reliance on fossil resources and thus carbon dioxide emission. Hydrodeoxygenation (HDO) refers collectively to a series of important biorefinery processes to produce biofuels. Here, we...
详细信息
Biofuel production can alleviate reliance on fossil resources and thus carbon dioxide emission. Hydrodeoxygenation (HDO) refers collectively to a series of important biorefinery processes to produce biofuels. Here, well-dispersed and ultra-small Ru metal nanoclusters (ca. 1 nm), confined within the micropores of zeolite Y, provide the required active site intimacy, which significantly boosts the chemoselectivity towards the production of pentanoic biofuels in the direct, one-pot HDO of neat ethyl levulinate. Crucial for improving catalyst stability is the addition of La, which upholds the confined proximity by preventing zeolite lattice deconstruction during catalysis. We have established and extended an understanding of the “intimacy criterion” in catalytic biomass valorization. These findings bring new understanding of HDO reactions over confined proximity sites, leading to potential application for pentanoic biofuels in biomass conversion.
Metal/ligand in situ assembly is crucial for tailoring the reactivity & selectivity in transition metal catalysis. Cooperative catalysis via a single metal/two ligands is still underdeveloped, since it is rather c...
详细信息
Metal/ligand in situ assembly is crucial for tailoring the reactivity & selectivity in transition metal catalysis. Cooperative catalysis via a single metal/two ligands is still underdeveloped, since it is rather challenging to harness the distinct reactivity profiles of the species generated by self-assembly of a single metal precursor with a mixture of different ligands. Herein, we report a catalytic system composed of a single metal/two ligands for a three-component reaction of polyfluoroarene, α-diazo ester, and allylic electrophile, leading to highly efficient construction of densely functionalized quaternary carbon centers, that are otherwise hardly accessible. Mechanistic studies suggest this reaction follows a cooperative bimetallic pathway via two catalysts with distinct reactivity profiles, which are assembled in situ from a single metal precursor and two ligands and work in concert to escort the transformation.
Sub-nanowires (SNWs) exhibit great potential applications in nanocomposites owing to their high specific surface area, high flexibility, and similarity to polymer chains in dimension, which are a good entry point to b...
详细信息
Sub-nanowires (SNWs) exhibit great potential applications in nanocomposites owing to their high specific surface area, high flexibility, and similarity to polymer chains in dimension, which are a good entry point to bridge inorganic materials and polymer materials. Herein, we synthesized hydroxyapatite sub-nanowires (HAP SNWs) and engineered hydroxyapatite sub-nanowires/polyimide (HSP) gels and films by simple mixing of HAP SNWs and polyimide (PI). Benefiting from the interactions between HAP SNWs and PI, these nanocomposites were a continuous hybrid network. As the increase of HAP SNWs contents, the viscosity and modulus of HSP gels were greatly improved by one or two orders of magnitude compared with PI gel. HSP films not only maintained high transparency but also gained high haze, as well as exhibited enhanced Young's modulus. Thus, both HSP gels and films developed in this work are promising for various applications in coatings and high-performance films.
暂无评论