咨询与建议

限定检索结果

文献类型

  • 6,041 篇 期刊文献
  • 4,794 篇 会议
  • 5 册 图书

馆藏范围

  • 10,840 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,261 篇 工学
    • 4,436 篇 计算机科学与技术...
    • 3,736 篇 软件工程
    • 1,554 篇 信息与通信工程
    • 827 篇 电气工程
    • 812 篇 控制科学与工程
    • 769 篇 生物工程
    • 756 篇 化学工程与技术
    • 714 篇 电子科学与技术(可...
    • 532 篇 光学工程
    • 521 篇 生物医学工程(可授...
    • 506 篇 机械工程
    • 349 篇 仪器科学与技术
    • 347 篇 材料科学与工程(可...
    • 307 篇 动力工程及工程热...
    • 281 篇 交通运输工程
    • 219 篇 建筑学
    • 216 篇 土木工程
  • 4,245 篇 理学
    • 2,039 篇 数学
    • 1,257 篇 物理学
    • 923 篇 生物学
    • 661 篇 统计学(可授理学、...
    • 601 篇 化学
    • 310 篇 系统科学
  • 1,881 篇 管理学
    • 1,086 篇 管理科学与工程(可...
    • 862 篇 图书情报与档案管...
    • 352 篇 工商管理
  • 519 篇 医学
    • 430 篇 临床医学
    • 312 篇 基础医学(可授医学...
    • 216 篇 药学(可授医学、理...
  • 270 篇 法学
    • 226 篇 社会学
  • 228 篇 农学
  • 154 篇 经济学
  • 81 篇 教育学
  • 33 篇 军事学
  • 30 篇 文学
  • 17 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 259 篇 semantics
  • 216 篇 feature extracti...
  • 202 篇 deep learning
  • 159 篇 data mining
  • 133 篇 computational mo...
  • 132 篇 training
  • 123 篇 machine learning
  • 113 篇 convolution
  • 112 篇 knowledge engine...
  • 102 篇 neural networks
  • 96 篇 predictive model...
  • 94 篇 computer science
  • 93 篇 image segmentati...
  • 93 篇 data models
  • 91 篇 object detection
  • 87 篇 reinforcement le...
  • 85 篇 accuracy
  • 84 篇 optimization
  • 82 篇 laboratories
  • 77 篇 educational inst...

机构

  • 394 篇 college of compu...
  • 305 篇 university of ch...
  • 248 篇 key laboratory o...
  • 174 篇 iccub universita...
  • 173 篇 infn sezione di ...
  • 171 篇 department of ph...
  • 166 篇 school of inform...
  • 161 篇 infn sezione di ...
  • 158 篇 horia hulubei na...
  • 152 篇 h.h. wills physi...
  • 152 篇 yandex school of...
  • 150 篇 van swinderen in...
  • 138 篇 universiteit maa...
  • 124 篇 massachusetts in...
  • 116 篇 national researc...
  • 113 篇 warsaw
  • 113 篇 university of ci...
  • 113 篇 university of ma...
  • 112 篇 université clerm...
  • 111 篇 lpnhe sorbonne u...

作者

  • 117 篇 beiter a.
  • 117 篇 arzymatov k.
  • 116 篇 barter w.
  • 114 篇 brundu d.
  • 110 篇 bellee v.
  • 102 篇 bowcock t.j.v.
  • 102 篇 casse g.
  • 101 篇 bobulska d.
  • 100 篇 blake t.
  • 100 篇 borsato m.
  • 100 篇 betancourt c.
  • 100 篇 belin s.
  • 97 篇 afsharnia h.
  • 94 篇 belavin v.
  • 93 篇 bediaga i.
  • 89 篇 cali s.
  • 87 篇 amato s.
  • 86 篇 baryshnikov f.
  • 85 篇 bjørn m.
  • 78 篇 boettcher t.

语言

  • 10,103 篇 英文
  • 482 篇 其他
  • 268 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=Key laboratory of Data Engineering and Knowledge Engineering"
10840 条 记 录,以下是711-720 订阅
排序:
Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch
Semi-Supervised Learning via Weight-aware Distillation under...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Pan Du Suyun Zhao Zisen Sheng Cuiping Li Hong Chen Key Lab of Data Engineering and Knowledge Engineering of MOE Renmin University of China Renmin University of China Beijing China
Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, t...
来源: 评论
Sentiment Analysis of Semester Learning Essays in Design Education
Sentiment Analysis of Semester Learning Essays in Design Edu...
收藏 引用
2023 IEEE International Conference on Industrial engineering and engineering Management, IEEM 2023
作者: Wang, Z.H. Ming, Z.J. Wang, G.X. Mistree, F. Allen, J.K. School of Mechanical Engineering Beijing Institute of Technology Beijing China Yangtze Delta Region Academy of Beijing Institute of Technology Jiaxing China Ministry of Industry and Information Technology Key Laboratory of Industry Knowledge & Data Fusion Technology and Application Beijing China The University of Oklahoma The Systems Realization Laboratory Norman United States
AME4163: Principles of engineering Design is a design, build and test course offered at the University of Oklahoma, Norman, USA. Throughout the semester students are expected to reflect on authentic and immersive expe... 详细信息
来源: 评论
T³Planner: Multi-Phase Planning Across Structure-Constrained Optical, IP, and Routing Topologies
收藏 引用
IEEE Journal on Selected Areas in Communications 2025年 第5期43卷 1823-1839页
作者: Yijun Hao Shusen Yang Fang Li Yifan Zhang Cong Zhao Xuebin Ren Peng Zhao Chenren Xu Shibo Wang National Engineering Laboratory for Big Data Analytics Xi’an Jiaotong University Xi’an China National Engineering Laboratory for Big Data Analytics and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an China School of Computer Science Peking University Beijing China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong China National Engineering Laboratory for Big Data Analytics XiÃan Jiaotong University XiÃan China
Network topology planning is an essential multi-phase process to build and jointly optimize the multi-layer network topologies in wide-area networks (WANs). Most existing practices target single-phase/layer planning, ... 详细信息
来源: 评论
Extracting Named Entity Using Entity Labeling in Geological Text Using Deep Learning Approach
收藏 引用
Journal of Earth Science 2023年 第5期34卷 1406-1417页
作者: Qinjun Qiu Miao Tian Zhong Xie Yongjian Tan Kai Ma Qingfang Wang Shengyong Pan Liufeng Tao State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR Chinese Academy of Surveying and MappingBeijing 100036China Key Laboratory of Spatial-Temporal Big Data Analysis and Application of Natural Resources in Megacities MNRShanghai 20063China Key Laboratory of Geological Survey and Evaluation of Ministry of Education China University of GeosciencesWuhan 430074China Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering China Three Gorges UniversityYichang 443002China College of Computer and Information Technology China Three Gorges UniversityYichang 443002China Chengdu Geological Environment Monitoring Station Chengdu 610036China Wuhan Zondy Cyber Science&Technology Co. Ltd.Wuhan 430074China
Artificial intelligence(AI) is the key to mining and enhancing the value of big data, and knowledge graph is one of the important cornerstones of artificial intelligence, which is the core foundation for the integrati... 详细信息
来源: 评论
The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest  27
The Role of Depth, Width, and Tree Size in Expressiveness of...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Lyu, Shen-Huan Wu, Jin-Hui Zheng, Qin-Cheng Ye, Baoliu Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University China College of Computer Science and Software Engineering Hohai University China National Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China
Random forests are classical ensemble algorithms that construct multiple randomized decision trees and aggregate their predictions using naive averaging. Zhou and Feng [51] further propose a deep forest algorithm with... 详细信息
来源: 评论
CARDnet: A denoiser based on contrast-aware and residual-dense block  19th
CARDnet: A denoiser based on contrast-aware and residual-den...
收藏 引用
19th Chinese Intelligent Systems Conference, CISC 2023
作者: Cai, Qiang Cao, Ying Wang, Chen Li, Haisheng Ma, Mengxu School of Computer Science and Engineering Beijing Technology and Business University Beijing100048 China Beijing Key Laboratory of Big Data Technology for Food Safety Beijing100048 China National Engineering Laboratory for Agri-Product Quality Traceability Beijing100048 China
In recent years, deep convolutional neural networks have shown good performance on images with spatially invariant noise, but their performance is limited on real-world noisy images. In order to improve the practicali... 详细信息
来源: 评论
Influencing Factors of Healthy Aging Risk Assessed Using Biomarkers:A Life Course Perspective
收藏 引用
China CDC weekly 2024年 第11期6卷 219-224,I0014-I0017页
作者: Cedric Zhang Bo Lua Yajie Gao Jinming Li Xingqi Cao Xinwei Lyu Yinuo Tu Shuyi Jin Zuyun Liu Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Healththe Key Laboratory of Intelligent Preventive Medicine of Zhejiang ProvinceZhejiang University School of MedicineHangzhou CityZhejiang ProvinceChina Institute of Epidemiology and Health Care University College LondonLondonUK College of Chemical and Biological Engineering Zhejiang UniversityHangzhou CityZhejiang ProvinceChina
Assessing individual risks of healthy aging using biomarkers and identifying associated factors have become important areas of *** this study,we conducted a literature review of relevant publications between 2018 and ... 详细信息
来源: 评论
Utilizing Sub-Topic Units for Patent Prior-Art Search
收藏 引用
Chinese Journal of Electronics 2025年 第3期23卷 480-483页
作者: Dong Zhou Jianxun Liu Sanrong Zhang Key Laboratory of Knowledge Processing and Networked Manufacturing & School of Computer Science and Engineering Hunan University of Science and Technology Xiangtan Hunan China
One of the defining challenges in patent prior-art search is the problem of representing a long, technical document as a query. Previously work on this problem has concentrated on single query representations of the p... 详细信息
来源: 评论
Efficient Homomorphic Approximation of Max Pooling for Privacy-Preserving Deep Learning  6th
Efficient Homomorphic Approximation of Max Pooling for Pri...
收藏 引用
6th International Conference on Machine Learning for Cyber Security, ML4CS 2024
作者: Zhang, Peng Qiu, Dongyan Duan, Ao Liu, Hongwei The Guangdong Key Laboratory of Intelligent Information Processing College of Electronics and Information Engineering Shenzhen University Guangdong Shenzhen518060 China College of Big Data and Internet Shenzhen Technology University Guangdong Shenzhen518118 China
Privacy-Preserving Deep Learning (PPDL) using Fully Homomorphic Encryption (FHE) addresses potential data privacy exposure risks associated with deploying deep learning models in untrusted cloud environments. FHE-base... 详细信息
来源: 评论
A Fine-Grained Anomaly Detection Method Fusing Isolation Forest and knowledge Graph Reasoning  19th
A Fine-Grained Anomaly Detection Method Fusing Isolation For...
收藏 引用
19th International Conference on Web Information Systems and Applications, WISA 2022
作者: Xu, Jie Zhou, Jiantao College of Computer Science Engineering Research Center of Ecological Big Data Ministry of Education National and Local Joint Engineering Research Center of Mongolian Intelligent Information Processing Technology Inner Mongolia Cloud Computing and Service Software Engineering Laboratory Inner Mongolia Social Computing and Data Processing Key Laboratory Inner Mongolia Discipline Inspection and Supervision Big Data Key Laboratory Inner Mongolia Big Data Analysis Technology Engineering Laboratory Inner Mongolia University Hohhot China
Anomaly detection aims to find outliers data that do not conform to expected behaviors in a specific scenario, which is indispensable and critical in current safety environments related studies. However, when performi... 详细信息
来源: 评论