咨询与建议

限定检索结果

文献类型

  • 461 篇 期刊文献
  • 422 篇 会议
  • 1 册 图书

馆藏范围

  • 884 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 606 篇 工学
    • 475 篇 计算机科学与技术...
    • 411 篇 软件工程
    • 135 篇 信息与通信工程
    • 70 篇 生物工程
    • 68 篇 控制科学与工程
    • 54 篇 生物医学工程(可授...
    • 47 篇 机械工程
    • 45 篇 电子科学与技术(可...
    • 41 篇 电气工程
    • 36 篇 化学工程与技术
    • 31 篇 光学工程
    • 21 篇 航空宇航科学与技...
    • 20 篇 仪器科学与技术
    • 18 篇 交通运输工程
    • 14 篇 土木工程
    • 13 篇 动力工程及工程热...
  • 332 篇 理学
    • 230 篇 数学
    • 81 篇 生物学
    • 53 篇 统计学(可授理学、...
    • 41 篇 物理学
    • 36 篇 化学
    • 26 篇 系统科学
  • 212 篇 管理学
    • 117 篇 管理科学与工程(可...
    • 95 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 38 篇 医学
    • 30 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 13 篇 法学
    • 11 篇 社会学
  • 11 篇 农学
  • 5 篇 经济学
  • 4 篇 教育学
  • 3 篇 文学
  • 3 篇 艺术学
  • 2 篇 军事学

主题

  • 51 篇 computer science
  • 44 篇 educational inst...
  • 42 篇 laboratories
  • 41 篇 knowledge engine...
  • 41 篇 educational tech...
  • 25 篇 data mining
  • 24 篇 computer science...
  • 15 篇 semantics
  • 14 篇 feature extracti...
  • 13 篇 reinforcement le...
  • 12 篇 image segmentati...
  • 12 篇 ontologies
  • 11 篇 deep learning
  • 11 篇 topology
  • 10 篇 authentication
  • 9 篇 recommender syst...
  • 9 篇 contrastive lear...
  • 9 篇 genetic algorith...
  • 9 篇 artificial intel...
  • 9 篇 multiobjective o...

机构

  • 394 篇 college of compu...
  • 274 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 42 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 34 篇 college of softw...
  • 31 篇 college of compu...
  • 23 篇 school of artifi...
  • 23 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 17 篇 key laboratory o...
  • 16 篇 jilin university...
  • 15 篇 key laboratory o...
  • 15 篇 school of comput...
  • 14 篇 key laboratory o...
  • 14 篇 the college of c...
  • 13 篇 college of compu...
  • 13 篇 college of compu...
  • 11 篇 college of softw...

作者

  • 38 篇 yang bo
  • 34 篇 sun geng
  • 26 篇 li ximing
  • 25 篇 ouyang jihong
  • 23 篇 niyato dusit
  • 23 篇 dantong ouyang
  • 22 篇 liu dayou
  • 22 篇 yanheng liu
  • 21 篇 li jiahui
  • 21 篇 bo yang
  • 20 篇 liu yanheng
  • 19 篇 ouyang dantong
  • 19 篇 da-you liu
  • 19 篇 li xiongfei
  • 18 篇 dayou liu
  • 17 篇 chen haipeng
  • 17 篇 liang yanchun
  • 16 篇 wang jian
  • 16 篇 huang lan
  • 16 篇 wang jiacheng

语言

  • 814 篇 英文
  • 52 篇 其他
  • 18 篇 中文
检索条件"机构=Key laboratory of Symbolic Computing and Knowledge Engineering of Ministry of Education"
884 条 记 录,以下是281-290 订阅
排序:
Recovering accurate labeling information from partially valid data for effective multi-label learning  29
Recovering accurate labeling information from partially vali...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Li, Ximing Wang, Yang College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation Knowledge Engineering of Ministry of Education Jilin University China Key Laboratory of Knowledge Engineering With Big Data Ministry of Education Hefei University of Technology China School of Computer Sci and Information Engineering Hefei University of Technology China
Partial Multi-label Learning (PML) aims to induce the multi-label predictor from datasets with noisy supervision, where each training instance is associated with several candidate labels but only partially valid. To a... 详细信息
来源: 评论
BARGAIN-MATCH: A Game Theoretical Approach for Resource Allocation and Task Offloading in Vehicular Edge computing Networks
arXiv
收藏 引用
arXiv 2022年
作者: Sun, Zemin Sun, Geng Liu, Yanheng Wang, Jian Cao, Dongpu The College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China The School of Vehicle and Mobility Tsinghua University Beijing China
Vehicular edge computing (VEC) is emerging as a promising architecture of vehicular networks (VNs) by deploying the cloud computing resources at the edge of the VNs. However, efficient resource management and task off... 详细信息
来源: 评论
Research on the Task Scheduling System for Agricultural Plant Protection UAV  19
Research on the Task Scheduling System for Agricultural Plan...
收藏 引用
Proceedings of the 2019 2nd International Conference on Robot Systems and Applications
作者: Sun Fengjie Wang Xianchang Zhang Rui Jilin University Key Laboratory of Symbolic Computing and Knowledge Engineering Ministry of Education China Jilin University Key Laboratory of Symbolic Computing and Knowledge Engineering Ministry of Education Chengdu Kestrel Artificial Intelligence Institute China
Unmanned Aerial Vehicle (UAV) can greatly reduce manpower in agricultural plant protection such as watering, sowing, pesticide spraying. It helps in creating an autonomous manufacturing sys- tem by executing tasks wit... 详细信息
来源: 评论
UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Saichao Sun, Geng Li, Jiahui Liang, Shuang Wu, Qingqing Wang, Pengfei Niyato, Dusit The College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun130012 China The College of Computing and Data Science Nanyang Technological University 639798 Singapore The School of Information Science and Technology Northeast Normal University Changchun130117 China The Department of Electronic Engineering Shanghai Jiao Tong University Shanghai200240 China The School of Computer Science and Technology Dalian University of Technology Dalian116024 China
In this paper, we investigate an unmanned aerial vehicle (UAV)-assistant air-to-ground communication system, where multiple UAVs form a UAV-enabled virtual antenna array (UVAA) to communicate with remote base stations... 详细信息
来源: 评论
Learning Group-Disentangled Representation for Interpretable Thoracic Pathologic Prediction
Learning Group-Disentangled Representation for Interpretable...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Hao Li Yirui Wu Hexuan Hu Hu Lu Yong Lai Shaohua Wan Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University College of Computer and Information Hohai University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University School of Computer Science and Communication Engineering Jiangsu University Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China
Deep learning methods have shown significant performance in medical image analysis tasks. However, they generally act like ”black box” without explanations in both feature extraction and decision processes, leading ... 详细信息
来源: 评论
Weakly supervised prototype topic model with discriminative seed words: Modifying the category prior by self-exploring supervised signals
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Bing Wang, Yue Li, Ximing Ouyang, Jihong College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation Knowledge Engineering of Ministry of Education Jilin University China
Dataless text classification, i.e., a new paradigm of weakly supervised learning, refers to the task of learning with unlabeled documents and a few predefined representative words of categories, known as seed words. T... 详细信息
来源: 评论
Reinforced iterative knowledge distillation for cross-lingual named entity recognition
arXiv
收藏 引用
arXiv 2021年
作者: Liang, Shining Gong, Ming Pei, Jian Shou, Linjun Zuo, Wanli Zuo, Xianglin Jiang, Daxin College of Computer Science and Technology Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education STCA NLP Group Microsoft School of Computing Science Simon Fraser University
Named entity recognition (NER) is a fundamental component in many applications, such as Web Search and Voice Assistants. Although deep neural networks greatly improve the performance of NER, due to the requirement of ... 详细信息
来源: 评论
Joint Power and 3D Trajectory Optimization for UAV-enabled Wireless Powered Communication Networks with Obstacles
arXiv
收藏 引用
arXiv 2023年
作者: Pan, Hongyang Liu, Yanheng Sun, Geng Fan, Junsong Liang, Shuang Yuen, Chau The College of Computer Science and Technology Jilin University Changchun130012 China Pillar Singapore University of Technology and Design 487372 Singapore The Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China The School of Information Science and Technology Northeast Normal University Changchun130024 China
Unmanned aerial vehicle (UAV)-enabled wireless powered communication networks (WPCNs) are promising technologies in 5G/6G wireless communications, while there are several challenges about UAV power allocation and sche... 详细信息
来源: 评论
Hierarchical features-based targeted aspect extraction from online reviews
收藏 引用
Intelligent Data Analysis 2021年 第1期25卷 205-223页
作者: He, Jin Li, Lei Wang, Yan Wu, Xindong Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology Ministry of Education Hefei Anhui China School of Computer Science and Information Engineering Hefei University of Technology Hefei Anhui China Department of Computing Macquarie University Sydney Australia MiningLamp Academy of Sciences Mininglamp Techonologies Beijing China
With the prevalence of online review websites, large-scale data promote the necessity of focused analysis. This task aims to capture the information that is highly relevant to a specific aspect. However, the broad sco... 详细信息
来源: 评论
A Multi-Agent Deep Reinforcement Learning Method for Fully Noisy Observations
SSRN
收藏 引用
SSRN 2023年
作者: Wang, Kaiyu Zhang, Menglin Qu, Bohao Wang, Xianchang College of Computer Science and Technology Jilin University Jilin Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin Changchun130012 China School of Artificial Intelligence Jilin University Jilin Changchun130012 China Chengdu Kestrel Artificial Intelligence Institute Chengdu611730 China
Multi-agent reinforcement learning (MARL) algorithms have achieved great breakthroughs in many aspects. The MARL algorithms can learn effective policies in ideal simulation environments. But different from the ideal s... 详细信息
来源: 评论