咨询与建议

限定检索结果

文献类型

  • 1,305 篇 会议
  • 803 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 2,126 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,370 篇 工学
    • 1,133 篇 计算机科学与技术...
    • 948 篇 软件工程
    • 256 篇 信息与通信工程
    • 142 篇 生物工程
    • 126 篇 控制科学与工程
    • 97 篇 电气工程
    • 76 篇 生物医学工程(可授...
    • 73 篇 建筑学
    • 67 篇 电子科学与技术(可...
    • 60 篇 土木工程
    • 59 篇 机械工程
    • 57 篇 化学工程与技术
    • 54 篇 光学工程
    • 33 篇 动力工程及工程热...
    • 31 篇 仪器科学与技术
    • 26 篇 交通运输工程
  • 612 篇 理学
    • 367 篇 数学
    • 148 篇 生物学
    • 130 篇 统计学(可授理学、...
    • 115 篇 物理学
    • 71 篇 系统科学
    • 61 篇 化学
  • 558 篇 管理学
    • 364 篇 图书情报与档案管...
    • 231 篇 管理科学与工程(可...
    • 88 篇 工商管理
  • 81 篇 医学
    • 73 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 67 篇 法学
    • 61 篇 社会学
  • 28 篇 经济学
    • 28 篇 应用经济学
  • 24 篇 教育学
  • 15 篇 农学
  • 8 篇 文学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 97 篇 semantics
  • 92 篇 data mining
  • 79 篇 knowledge engine...
  • 61 篇 data engineering
  • 53 篇 training
  • 43 篇 knowledge manage...
  • 39 篇 feature extracti...
  • 37 篇 ontologies
  • 36 篇 data models
  • 33 篇 artificial intel...
  • 32 篇 educational inst...
  • 32 篇 computational mo...
  • 32 篇 ontology
  • 30 篇 visualization
  • 30 篇 information retr...
  • 29 篇 databases
  • 29 篇 machine learning
  • 28 篇 computer science
  • 28 篇 conferences
  • 27 篇 xml

机构

  • 197 篇 school of inform...
  • 105 篇 school of comput...
  • 56 篇 department of da...
  • 56 篇 department of da...
  • 50 篇 key laboratory o...
  • 50 篇 key laboratory o...
  • 48 篇 institute of dat...
  • 35 篇 knowledge and da...
  • 34 篇 college of compu...
  • 33 篇 school of inform...
  • 32 篇 jiangxi key labo...
  • 31 篇 key laboratory o...
  • 29 篇 key laboratory o...
  • 28 篇 key laboratory o...
  • 27 篇 department of ma...
  • 25 篇 school of econom...
  • 25 篇 key laboratory o...
  • 24 篇 knowledge and da...
  • 22 篇 knowledge and da...
  • 22 篇 knowledge & data...

作者

  • 75 篇 stumme gerd
  • 72 篇 du xiaoyong
  • 63 篇 chen hong
  • 59 篇 nürnberger andre...
  • 42 篇 li cuiping
  • 41 篇 hanika tom
  • 37 篇 xiaoyong du
  • 34 篇 wu xindong
  • 34 篇 atzmueller marti...
  • 33 篇 wade vincent
  • 32 篇 he jun
  • 32 篇 wang meng
  • 32 篇 hotho andreas
  • 31 篇 liu hongyan
  • 30 篇 li xirong
  • 29 篇 hong chen
  • 29 篇 wang shan
  • 29 篇 zhang jing
  • 28 篇 xindong wu
  • 27 篇 o'sullivan decla...

语言

  • 1,934 篇 英文
  • 158 篇 其他
  • 31 篇 中文
  • 4 篇 德文
检索条件"机构=Knowledge and Data Engineering"
2126 条 记 录,以下是1031-1040 订阅
排序:
CitationAS: A Tool of Automatic Survey Generation Based on Citation Content
收藏 引用
Journal of data and Information Science 2018年 第2期3卷 20-37页
作者: jie wang chengzhi zhang mengying zhang sanhong deng School of Information Management Nanjing University Nanjing 210023 China Department of Information Management Nanjing University of Science and Technology Nanjing 210094 China Jiangsu Key Laboratory of Data Engineering and Knowledge Service Nanjing University Nanjing 210023 China
Purpose: This study aims to build an automatic survey generation tool, named CitationAS, based on citation content as represented by the set of citing sentences in the original ***/methodology/approach: Firstly, we ... 详细信息
来源: 评论
LoGAN: Generating logos with a generative adversarial neural network conditioned on color
arXiv
收藏 引用
arXiv 2018年
作者: Mino, Ajkel Spanakis, Gerasimos Department of Data Science and Knowledge Engineering Maastricht University Maastricht Netherlands
Designing a logo is a long, complicated, and expensive process for any designer. However, recent advancements in generative algorithms provide models that could offer a possible solution. Logos are multi-modal, have v... 详细信息
来源: 评论
The Second-order h-type Indicators for Identifying Top Units
收藏 引用
data and Information Management 2018年 第1期2卷 49-56页
作者: Ye, Fred Y. Bornmann, Lutz School of Information Management Nanjing University 210023 Nanjing China Jiangsu Key Laboratory of Data Engineering and Knowledge Service 210023 Nanjing China Administrative Headquarters of the Max Planck Society Division for Science and Innovation Studies Hofgartenstr. 8 D-80539 Munich Germany
The second-order h-type indicators are suggested to identify top units in scientometrics. Basically, the re-ranking of h-type series leads to the second-order h-type indicator. The second-order h-type indicators provi... 详细信息
来源: 评论
Dense residual network: Enhancing global dense feature flow for character recognition
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Zhao Tang, Zemin Wang, Yang Zhang, Zheng Zhan, Choujun Zha, Zhengjun Wang, Meng School of Computer Science and Information Engineering Hefei University of Technology Hefei230009 China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education Intelligent Interconnected Systems Laboratory of Anhui Province Hefei University of Technology Hefei230009 China School of Computer Science and Technology Soochow University Suzhou215006 China Shenzhen China School of Computer South China Normal University Guangzhou510631 China Deparmtment of Computer Science and Technology University of Science and Technology of China Hefei China
Deep Convolutional Neural Networks (CNNs), such as Dense Convolutional Network (DenseNet), have achieved great success for image representation learning by capturing deep hierarchical features. However, most existing ... 详细信息
来源: 评论
Retrospective motion correction of MR images using prior-assisted deep learning
arXiv
收藏 引用
arXiv 2020年
作者: Chatterjee, Soumick Sciarra, Alessandro Dünnwald, Max Oeltze-Jafra, Steffen Nürnberger, Andreas Speck, Oliver Department of Biomedical Magnetic Resonance Data and Knowledge Engineering Group Faculty of Computer Science Otto-von-Guericke Univeristy Magdeburg Germany MedDigit Department of Neurology Medical Faculty University Hopspital Department of Biomedical Magnetic Resonance Otto-von-Guericke Univeristy Magdeburg Germany MedDigit Department of Neurology Medical Faculty University Hopspital Faculty of Computer Science Otto-von-Guericke Univeristy Magdeburg Germany MedDigit Department of Neurology Medical Faculty University Hopspital German Centre for Neurodegenerative Diseases Center for Behavioral Brain Sciences Magdeburg Germany Data and Knowledge Engineering Group Faculty of Computer Science Otto-von-Guericke Univeristy Center for Behavioral Brain Sciences Magdeburg Germany Department of Biomedical Magnetic Resonance Otto-von-Guericke Univeristy German Centre for Neurodegenerative Diseases Leibniz Institute for Neurobiology Center for Behavioral Brain Sciences Magdeburg Germany
In MRI, motion artefacts are among the most common types of artefacts. They can degrade images and render them unusable for accurate diagnosis. Traditional methods, such as prospective or retrospective motion correcti... 详细信息
来源: 评论
Assessing the quality of geospatial linked data - Experiences from ordnance survey Ireland (OSi)  14
Assessing the quality of geospatial linked data - Experience...
收藏 引用
Posters and Demos Track of the 14th International Conference on Semantic Systems, SEMPDS 2018
作者: Debattista, Jeremy Clinton, Eamon Brennan, Rob Knowledge and Data Engineering Group ADAPT Centre School of Computer Science and Statistics Trinity College Dublin Dublin 2 Ireland Ordnance Survey Ireland Phoenix Park Dublin 8 Ireland
Ordnance Survey Ireland (OSi) is Ireland's national mapping agency that is responsible for the digitisation of the island's infrastructure in terms of mapping. Generating data from various sensors (e.g. spatia... 详细信息
来源: 评论
A Coarse-to-Fine Multi-stream Hybrid Deraining Network for Single Image Deraining
A Coarse-to-Fine Multi-stream Hybrid Deraining Network for S...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Yanyan Wei Zhao Zhang Haijun Zhang Richang Hong Meng Wang Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) Hefei University of Technology School of Computer Science and Information Engineering Hefei University of Technology Hefei China Department of Computer Science Harbin Institute of Technology (Shenzhen) Xili University Town Shenzhen China
Single image deraining task is still a very challenging task due to its ill-posed nature in reality. Recently, researchers have tried to fix this issue by training the CNN-based end-to-end models, but they still canno...
来源: 评论
Drawing order diagrams through two-dimension extension
arXiv
收藏 引用
arXiv 2019年
作者: Dürrschnabel, Dominik Hanika, Tom Stumme, Gerd Berlin School of Library and Information Science Humboldt University of Berlin Berlin Germany Knowledge and Data Engineering Group University of Kassel Kassel Germany Interdisciplinary Research Center for Information System Design University of Kassel Kassel Germany
Order diagrams are an important tool to visualize the complex structure of ordered sets. Favorable drawings of order diagrams, i.e., easily readable for humans, are hard to come by, even for small ordered sets. Many a... 详细信息
来源: 评论
BanFEL: A Blockchain Based Smart Contract for Fair and Efficient Lottery Scheme
BanFEL: A Blockchain Based Smart Contract for Fair and Effic...
收藏 引用
IEEE Conference on Dependable and Secure Computing
作者: Jiasheng Li Zijian Zhang Meng Li Beijing Engineering Research Center of Massive Language Information Beijing Institute of Technology Beijing China School of Computer Science University of Auckland Aukland New Zealand Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology) Hefei University of Technology Anhui China
Lottery is a game with many people's dreams. But corruptions of lottery centers make the lottery unfair. To address this unfair issue, fair lottery schemes have been studied for several years. In these schemes, de... 详细信息
来源: 评论
Deep learning - A first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
arXiv
收藏 引用
arXiv 2020年
作者: Egger, Jan Pepe, Antonio Gsaxner, Christina Jin, Yuan Li, Jianning Kern, Roman Institute of Computer Graphics and Vision Faculty of Computer Science and Biomedical Engineering Graz University of Technology Graz Austria Computer Algorithms for Medicine Laboratory Graz Austria Department of Oral and Maxillofacial Surgery Medical University of Graz Graz Austria University Medicine Essen Essen Germany Research Center for Connected Healthcare Big Data Zhejiang Lab Zhejiang Hangzhou China Research Unit Experimental Neurotraumatology Department of Neurosurgery Medical University of Graz Graz Austria Knowledge Discovery Know-Center Graz Austria Institute of Interactive Systems and Data Science Graz University of Technology Graz Austria
Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the l... 详细信息
来源: 评论