咨询与建议

限定检索结果

文献类型

  • 1,305 篇 会议
  • 798 篇 期刊文献
  • 19 册 图书

馆藏范围

  • 2,122 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,375 篇 工学
    • 1,138 篇 计算机科学与技术...
    • 953 篇 软件工程
    • 256 篇 信息与通信工程
    • 142 篇 生物工程
    • 126 篇 控制科学与工程
    • 99 篇 电气工程
    • 76 篇 生物医学工程(可授...
    • 73 篇 建筑学
    • 68 篇 电子科学与技术(可...
    • 60 篇 土木工程
    • 59 篇 机械工程
    • 57 篇 化学工程与技术
    • 54 篇 光学工程
    • 33 篇 动力工程及工程热...
    • 31 篇 仪器科学与技术
    • 26 篇 交通运输工程
  • 616 篇 理学
    • 369 篇 数学
    • 148 篇 生物学
    • 131 篇 统计学(可授理学、...
    • 116 篇 物理学
    • 71 篇 系统科学
    • 61 篇 化学
  • 560 篇 管理学
    • 366 篇 图书情报与档案管...
    • 231 篇 管理科学与工程(可...
    • 88 篇 工商管理
  • 79 篇 医学
    • 72 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 42 篇 药学(可授医学、理...
  • 67 篇 法学
    • 61 篇 社会学
  • 28 篇 经济学
    • 28 篇 应用经济学
  • 24 篇 教育学
  • 15 篇 农学
  • 8 篇 文学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 97 篇 semantics
  • 92 篇 data mining
  • 79 篇 knowledge engine...
  • 61 篇 data engineering
  • 52 篇 training
  • 43 篇 knowledge manage...
  • 38 篇 feature extracti...
  • 37 篇 ontologies
  • 35 篇 data models
  • 34 篇 artificial intel...
  • 32 篇 educational inst...
  • 32 篇 computational mo...
  • 32 篇 ontology
  • 31 篇 information retr...
  • 30 篇 visualization
  • 30 篇 machine learning
  • 29 篇 databases
  • 28 篇 computer science
  • 28 篇 conferences
  • 27 篇 xml

机构

  • 196 篇 school of inform...
  • 105 篇 school of comput...
  • 56 篇 department of da...
  • 56 篇 department of da...
  • 50 篇 key laboratory o...
  • 50 篇 key laboratory o...
  • 49 篇 institute of dat...
  • 35 篇 knowledge and da...
  • 34 篇 college of compu...
  • 33 篇 school of inform...
  • 32 篇 jiangxi key labo...
  • 30 篇 key laboratory o...
  • 29 篇 key laboratory o...
  • 29 篇 key laboratory o...
  • 27 篇 department of ma...
  • 25 篇 school of econom...
  • 25 篇 key laboratory o...
  • 24 篇 knowledge and da...
  • 22 篇 knowledge and da...
  • 22 篇 knowledge & data...

作者

  • 75 篇 stumme gerd
  • 70 篇 du xiaoyong
  • 62 篇 chen hong
  • 59 篇 nürnberger andre...
  • 41 篇 li cuiping
  • 41 篇 hanika tom
  • 37 篇 xiaoyong du
  • 34 篇 wu xindong
  • 34 篇 atzmueller marti...
  • 33 篇 he jun
  • 33 篇 wade vincent
  • 32 篇 wang meng
  • 32 篇 hotho andreas
  • 31 篇 liu hongyan
  • 30 篇 li xirong
  • 29 篇 hong chen
  • 29 篇 wang shan
  • 28 篇 zhang jing
  • 27 篇 xindong wu
  • 27 篇 o'sullivan decla...

语言

  • 2,003 篇 英文
  • 81 篇 其他
  • 34 篇 中文
  • 4 篇 德文
检索条件"机构=Knowledge and Data Engineering"
2122 条 记 录,以下是901-910 订阅
排序:
Deep Reinforcement Learning with Transformers for Text Adventure Games
Deep Reinforcement Learning with Transformers for Text Adven...
收藏 引用
IEEE Symposium on Computational Intelligence and Games, CIG
作者: Yunqiu Xu Ling Chen Meng Fang Yang Wang Chengqi Zhang Centre for Artificial Intelligence University of Technology Sydney Sydney Australia Tencent Robotics X Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) Hefei University of Technology China
In this paper, we study transformers for text-based games. As a promising replacement of recurrent modules in Natural Language Processing (NLP) tasks, the transformer architecture could be treated as a powerful state ... 详细信息
来源: 评论
Biasing MCTS with features for general games
arXiv
收藏 引用
arXiv 2019年
作者: Soemers, Dennis J.N.J. Piette, Éric Browne, Cameron Department of Data Science and Knowledge Engineering Maastricht University Maastricht Netherlands
This paper proposes using a linear function approximator, rather than a deep neural network (DNN), to bias a Monte Carlo tree search (MCTS) player for general games. This is unlikely to match the potential raw playing... 详细信息
来源: 评论
Ludii as a competition platform
arXiv
收藏 引用
arXiv 2019年
作者: Stephenson, Matthew Piette, Éric Soemers, Dennis J.N.J. Browne, Cameron Department of Data Science and Knowledge Engineering Maastricht University Maastricht Netherlands
Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). While its primary aim is to model, play, and analyse the full range of traditional strategy games, Ludii also has ...
来源: 评论
Query Minimization Under Stochastic Uncertainty  14th
Query Minimization Under Stochastic Uncertainty
收藏 引用
14th Latin American Symposium on Theoretical Informatics, LATIN 2020
作者: Chaplick, Steven Halldórsson, Magnús M. de Lima, Murilo S. Tonoyan, Tigran Lehrstuhl für Informatik I Universität Würzburg Würzburg Germany Department of Data Science and Knowledge Engineering Maastricht University Maastricht Netherlands ICE-TCS Department of Computer Science Reykjavik University Reykjavik Iceland School of Informatics University of Leicester Leicester United Kingdom Computer Science Department Technion Institute of Technology Haifa Israel
We study problems with stochastic uncertainty data on intervals for which the precise value can be queried by paying a cost. The goal is to devise an adaptive decision tree to find a correct solution to the problem in... 详细信息
来源: 评论
LoGANv2: Conditional Style-Based Logo Generation with Generative Adversarial Networks
LoGANv2: Conditional Style-Based Logo Generation with Genera...
收藏 引用
International Conference on Machine Learning and Applications (ICMLA)
作者: Cedric Oeldorf Gerasimos Spanakis Department of Data Science and Knowledge Engineering Maastricht University Maastricht The Netherlands
Domains such as logo synthesis, in which the data has a high degree of multi-modality, still pose a challenge for generative adversarial networks (GANs). Recent research shows that progressive training (ProGAN) and ma... 详细信息
来源: 评论
Feature re-learning with data augmentation for video relevance prediction
arXiv
收藏 引用
arXiv 2020年
作者: Dong, Jianfeng Wang, Xun Zhang, Leimin Xu, Chaoxi Yang, Gang Li, Xirong College of Computer and Information Engineering Zhejiang Gongshang University Hangzhou310035 China Key Lab of Data Engineering and Knowledge Engineering Renmin University of China AI & Media Computing Lab School of Information Renmin University of China Beijing100872 China
Predicting the relevance between two given videos with respect to their visual content is a key component for content-based video recommendation and retrieval. Thanks to the increasing availability of pre-trained imag... 详细信息
来源: 评论
An overview of the ludii general game system
arXiv
收藏 引用
arXiv 2019年
作者: Stephenson, Matthew Piette, Éric Soemers, Dennis J.N.J. Browne, Cameron Department of Data Science and Knowledge Engineering Maastricht University Maastricht Netherlands
The Digital Ludeme Project (DLP) aims to reconstruct and analyse over 1000 traditional strategy games using modern techniques. One of the key aspects of this project is the development of Ludii, a general game system ... 详细信息
来源: 评论
An empirical evaluation of two general game systems: Ludii and RBG
arXiv
收藏 引用
arXiv 2019年
作者: Piette, Éric Stephenson, Matthew Soemers, Dennis J.N.J. Browne, Cameron Department of Data Science and Knowledge Engineering Maastricht University Maastricht Netherlands
Although General Game Playing (GGP) systems can facilitate useful research in Artificial Intelligence (AI) for game-playing, they are often computationally inefficient and somewhat specialised to a specific class of g... 详细信息
来源: 评论
LoGANv2: Conditional Style-Based Logo Generation with Generative Adversarial Networks
arXiv
收藏 引用
arXiv 2019年
作者: Oeldorf, Cedric Spanakis, Gerasimos Department of Data Science and Knowledge Engineering Maastricht University Maastricht Netherlands
—Domains such as logo synthesis, in which the data has a high degree of multi-modality, still pose a challenge for generative adversarial networks (GANs). Recent research shows that progressive training (ProGAN) and ... 详细信息
来源: 评论
Learning policies from self-play with policy gradients and MCTS value estimates
arXiv
收藏 引用
arXiv 2019年
作者: Soemers, Dennis J.N.J. Piette, Éric Stephenson, Matthew Browne, Cameron Department of Data Science and Knowledge Engineering Maastricht University Maastricht Netherlands
In recent years, state-of-the-art game-playing agents often involve policies that are trained in self-playing processes where Monte Carlo tree search (MCTS) algorithms and trained policies iteratively improve each oth... 详细信息
来源: 评论