咨询与建议

限定检索结果

文献类型

  • 4,486 篇 会议
  • 4,191 篇 期刊文献
  • 182 册 图书

馆藏范围

  • 8,859 篇 电子文献
  • 4 种 纸本馆藏

日期分布

学科分类号

  • 5,715 篇 工学
    • 4,145 篇 计算机科学与技术...
    • 3,394 篇 软件工程
    • 1,016 篇 控制科学与工程
    • 1,007 篇 信息与通信工程
    • 716 篇 生物工程
    • 609 篇 电气工程
    • 560 篇 光学工程
    • 497 篇 生物医学工程(可授...
    • 428 篇 机械工程
    • 388 篇 电子科学与技术(可...
    • 279 篇 化学工程与技术
    • 237 篇 仪器科学与技术
    • 171 篇 土木工程
    • 156 篇 建筑学
    • 149 篇 材料科学与工程(可...
    • 134 篇 交通运输工程
    • 112 篇 动力工程及工程热...
  • 3,077 篇 理学
    • 1,608 篇 数学
    • 902 篇 物理学
    • 835 篇 生物学
    • 568 篇 统计学(可授理学、...
    • 335 篇 化学
    • 257 篇 系统科学
  • 1,448 篇 管理学
    • 754 篇 管理科学与工程(可...
    • 743 篇 图书情报与档案管...
    • 323 篇 工商管理
  • 388 篇 医学
    • 321 篇 临床医学
    • 248 篇 基础医学(可授医学...
    • 168 篇 药学(可授医学、理...
  • 175 篇 法学
    • 159 篇 社会学
  • 95 篇 教育学
  • 92 篇 农学
  • 84 篇 经济学
  • 22 篇 文学
  • 10 篇 艺术学
  • 9 篇 军事学
  • 4 篇 哲学
  • 2 篇 历史学

主题

  • 407 篇 artificial intel...
  • 306 篇 computer science
  • 247 篇 semantics
  • 230 篇 laboratories
  • 160 篇 deep learning
  • 144 篇 training
  • 141 篇 feature extracti...
  • 129 篇 computational mo...
  • 127 篇 machine learning
  • 102 篇 computer vision
  • 101 篇 image segmentati...
  • 101 篇 robot sensing sy...
  • 99 篇 visualization
  • 98 篇 contrastive lear...
  • 90 篇 reinforcement le...
  • 86 篇 robustness
  • 84 篇 robots
  • 84 篇 speech recogniti...
  • 83 篇 object detection
  • 82 篇 cameras

机构

  • 279 篇 computer science...
  • 227 篇 shanghai artific...
  • 162 篇 computer science...
  • 152 篇 computer science...
  • 139 篇 mit computer sci...
  • 118 篇 peng cheng labor...
  • 113 篇 computer science...
  • 101 篇 computer science...
  • 100 篇 school of comput...
  • 92 篇 college of compu...
  • 87 篇 school of artifi...
  • 87 篇 mit computer sci...
  • 81 篇 institute of art...
  • 75 篇 moe key lab of a...
  • 72 篇 gaoling school o...
  • 71 篇 mit computer sci...
  • 70 篇 school of comput...
  • 68 篇 department of co...
  • 67 篇 school of comput...
  • 66 篇 school of artifi...

作者

  • 125 篇 daniela rus
  • 124 篇 glass james
  • 65 篇 tao dacheng
  • 64 篇 zhao hai
  • 63 篇 demaine erik d.
  • 62 篇 liu yang
  • 58 篇 barzilay regina
  • 47 篇 rus daniela
  • 44 篇 li chenglong
  • 42 篇 kaelbling leslie...
  • 42 篇 james glass
  • 37 篇 belinkov yonatan
  • 35 篇 zhang zhuosheng
  • 35 篇 demaine martin l...
  • 34 篇 golland polina
  • 32 篇 paulo leitão
  • 32 篇 lozano-pérez tom...
  • 31 篇 williams brian c...
  • 30 篇 shen linlin
  • 29 篇 lynch jayson

语言

  • 7,887 篇 英文
  • 876 篇 其他
  • 106 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 2 篇 斯洛文尼亚文
检索条件"机构=LIACC—Artificial Intelligence and Computer Science Laboratory"
8859 条 记 录,以下是251-260 订阅
排序:
Semantic-Aware Dual Contrastive Learning for Multi-Label Image Classification  26
Semantic-Aware Dual Contrastive Learning for Multi-Label Ima...
收藏 引用
26th European Conference on artificial intelligence, ECAI 2023
作者: Ma, Leilei Sun, Dengdi Wang, Lei Zhao, Haifeng Luo, Bin School of Computer Science and Technology Anhui University China School of Artificial Intelligence Anhui University China School of Computer Science and Engineering Nanjing University of Science and Technology China Anhui Provincial Key Laboratory of Multimodal Cognitive Computing Anhui University China Institute of Artificial Intelligence Hefei Comprehensive National Science Center China
Extracting image semantics effectively and assigning corresponding labels to multiple objects or attributes for natural images is challenging due to the complex scene contents and confusing label dependencies. Recent ... 详细信息
来源: 评论
A Research on the Relationship between Cognitive Level and Emotion by Integrating EBCNN Model and Epistemic Network Analysis  4
A Research on the Relationship between Cognitive Level and E...
收藏 引用
4th International Conference on Educational Technology, ICET 2024
作者: Ren, Wen Ye, Junmin Yu, Shuang Yin, Xinghan Si, Kaiyan Luo, Sheng Zhao, Gang Central China Normal University School of Computer Science WuHan China Central China Normal University Faculty of Artificial Intelligence Education WuHan China Central China Normal University Hubei Key Laboratory of Digital Education Faculty of Artificial Intelligence Education WuHan China
In online collaborative learning environments, cognitive level is a key indicator for assessing the learning process, and real-time assessment of students' cognitive level is crucial for facilitating effective lea... 详细信息
来源: 评论
Fixed-parameter tractability of capacitated k-facility location
收藏 引用
Frontiers of computer science 2023年 第6期17卷 171-173页
作者: Xiangyan KONG Zhen ZHANG School of Computer Science and Engineering Central South UniversityChangsha 410000China School of Frontier Crossover Studies Hunan University of Technology and BusinessChangsha 410205China Changsha Social Laboratory of Artificial Intelligence Changsha 410205China
1 Introduction In this paper we study the capacitated k-facility location(Capk-FL)*** instance I of the problem is specified by a set C of clients and a set F of facilities located in a metric space with distance func... 详细信息
来源: 评论
Latent Diffusion-Enhanced Virtual Try-On via Optimized Pseudo-Label Generation  39
Latent Diffusion-Enhanced Virtual Try-On via Optimized Pseud...
收藏 引用
39th Annual AAAI Conference on artificial intelligence, AAAI 2025
作者: Du, Chenghu Wang, Junyin Yu, Feng Xiong, Shengwu School of Computer Science and Artificial Intelligence Wuhan University of Technology China Shanghai Artificial Intelligence Laboratory China Interdisciplinary Artificial Intelligence Research Institute Wuhan College China School of Computer Science and Artificial Intelligence Wuhan Textile University China
Efficiently applying fully supervised learning to virtual try-on tasks is challenging due to the lack of paired ground truth in available training samples. Recent works have achieved virtual try-ons by employing self-... 详细信息
来源: 评论
Evolutionary analysis of adherence to the ISO 27001:2013 standard in Portugal: Regional and sectoral study  12
Evolutionary analysis of adherence to the ISO 27001:2013 sta...
收藏 引用
12th International Symposium on Digital Forensics and Security, ISDFS 2024
作者: Alves, Ines Teixeira, Paulo Lopes, Nuno School of Technology Polythecnic University of Cavado and Ave Barcelos Portugal Polythecnic University of Cavado and Ave. Barcelos Portugal Liacc - Artificial Intelligence and Computer Science Lab. Porto Portugal 2Ai - School of Technology Ipca Barcelos Portugal Lasi - Associate Laboratory of Intelligent Systems Guimarães Portugal
The growing threat of cybercrime and the explosion of data volume raise critical concerns about information security. Organizations must implement systems that manage, ensure the quality, integrity, and security of in... 详细信息
来源: 评论
Robust Motion-Guided Frame Sampler with Interpretive Evaluation for Video Action Recognition
收藏 引用
IEEE Transactions on Mobile Computing 2025年 第7期24卷 6197-6208页
作者: Bai, Jing Zhang, Yuxiang Wang, Yiran Xiao, Zhu Xiong, Yong Jiao, Licheng Xidian University School of Artificial Intelligence Key Laboratory of Intelligent Perception and Image Understanding Ministry of Education Xi'an710071 China Hunan University College of Computer Science and Electronic Engineering Changsha410082 China Hunan Lianzhi Technology Co. Ltd Changsha410200 China
Due to the presence of redundancy and interference, frame sampling is a promising but challenging solution to mitigate the expensive computation of video action recognition. Although the motion prior has shown great p... 详细信息
来源: 评论
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
收藏 引用
computers, Materials & Continua 2025年 第1期82卷 997-1026页
作者: Li Ma Cai Dai Xingsi Xue Cheng Peng School of Computer Science Shaanxi Normal UniversityXi’an710119China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of TechnologyFuzhou350118China Information Construction and Management Center and Institute of Artificial Intelligence and Educational New Productivity Ningxia Normal UniversityGuyuan756099China
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization *** the article,amulti-objective particle swarm optimization algorithmbased on decomposition and mul... 详细信息
来源: 评论
Understanding Resolution of Multi-Language Bugs: An Empirical Study on Apache Projects  17
Understanding Resolution of Multi-Language Bugs: An Empirica...
收藏 引用
17th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2023
作者: Li, Zengyang Wang, Wenshuo Wang, Sicheng Liang, Peng Mo, Ran School of Computer Science Central China Normal University Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning Wuhan China School of Computer Science Wuhan University Wuhan China
Background: In modern software systems, more and more systems are written in multiple programming languages (PLs). There is no comprehensive investigation on the phenomenon of multi-programming-language (MPL) bugs, wh... 详细信息
来源: 评论
Parallel Committees: High-Performance, Scalable, Secure and Fault-Tolerant Data Replication Using a Novel Sharding Technique  5
Parallel Committees: High-Performance, Scalable, Secure and ...
收藏 引用
5th International Conference on Blockchain Computing and Applications, BCCA 2023
作者: Solat, Siamak Naït-Abdesselam, Farid Université de Paris Cité France ENGIE Laboratory for Computer Science & Artificial Intelligence France University of Missouri Kansas City United States
Distributed replication systems that use consensus mechanisms to process clients' requests have major limitations and problems in scalability, throughput, and performance. Such problems are mainly due to the time ... 详细信息
来源: 评论
Training Graph Neural Networks on Growing Stochastic Graphs  48
Training Graph Neural Networks on Growing Stochastic Graphs
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Cerviño, Juan Ruiz, Luana Ribeiro, Alejandro University of Pennsylvania Department of Electrical and Systems Engineering Philadelphia United States Mit Computer Science & Artificial Intelligence Laboratory Cambridge United States
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data. Based on matrix multiplications, convolutions incur in high computational costs leading to scalability limitati... 详细信息
来源: 评论