咨询与建议

限定检索结果

文献类型

  • 4,476 篇 会议
  • 4,127 篇 期刊文献
  • 182 册 图书

馆藏范围

  • 8,785 篇 电子文献
  • 4 种 纸本馆藏

日期分布

学科分类号

  • 5,632 篇 工学
    • 4,072 篇 计算机科学与技术...
    • 3,392 篇 软件工程
    • 993 篇 信息与通信工程
    • 943 篇 控制科学与工程
    • 704 篇 生物工程
    • 579 篇 电气工程
    • 560 篇 光学工程
    • 489 篇 生物医学工程(可授...
    • 436 篇 机械工程
    • 375 篇 电子科学与技术(可...
    • 273 篇 化学工程与技术
    • 238 篇 仪器科学与技术
    • 174 篇 土木工程
    • 160 篇 建筑学
    • 145 篇 材料科学与工程(可...
    • 129 篇 交通运输工程
    • 111 篇 动力工程及工程热...
  • 3,058 篇 理学
    • 1,607 篇 数学
    • 886 篇 物理学
    • 830 篇 生物学
    • 566 篇 统计学(可授理学、...
    • 321 篇 化学
    • 259 篇 系统科学
  • 1,446 篇 管理学
    • 752 篇 管理科学与工程(可...
    • 744 篇 图书情报与档案管...
    • 322 篇 工商管理
  • 375 篇 医学
    • 310 篇 临床医学
    • 247 篇 基础医学(可授医学...
    • 168 篇 药学(可授医学、理...
  • 176 篇 法学
    • 160 篇 社会学
  • 97 篇 教育学
  • 90 篇 农学
  • 84 篇 经济学
  • 22 篇 文学
  • 10 篇 艺术学
  • 9 篇 军事学
  • 4 篇 哲学
  • 2 篇 历史学

主题

  • 412 篇 artificial intel...
  • 305 篇 computer science
  • 247 篇 semantics
  • 231 篇 laboratories
  • 151 篇 deep learning
  • 144 篇 training
  • 139 篇 feature extracti...
  • 126 篇 machine learning
  • 122 篇 computational mo...
  • 101 篇 robot sensing sy...
  • 99 篇 image segmentati...
  • 99 篇 computer vision
  • 94 篇 contrastive lear...
  • 94 篇 visualization
  • 91 篇 reinforcement le...
  • 87 篇 robustness
  • 86 篇 speech recogniti...
  • 84 篇 object detection
  • 83 篇 cameras
  • 81 篇 optimization

机构

  • 279 篇 computer science...
  • 217 篇 shanghai artific...
  • 161 篇 computer science...
  • 153 篇 computer science...
  • 139 篇 mit computer sci...
  • 113 篇 computer science...
  • 113 篇 peng cheng labor...
  • 101 篇 computer science...
  • 94 篇 school of comput...
  • 89 篇 college of compu...
  • 89 篇 mit computer sci...
  • 87 篇 school of artifi...
  • 82 篇 institute of art...
  • 75 篇 mit computer sci...
  • 74 篇 moe key lab of a...
  • 73 篇 gaoling school o...
  • 72 篇 school of comput...
  • 68 篇 department of co...
  • 65 篇 school of comput...
  • 64 篇 school of artifi...

作者

  • 124 篇 glass james
  • 124 篇 daniela rus
  • 65 篇 tao dacheng
  • 63 篇 zhao hai
  • 63 篇 demaine erik d.
  • 62 篇 liu yang
  • 57 篇 barzilay regina
  • 47 篇 rus daniela
  • 43 篇 li chenglong
  • 42 篇 kaelbling leslie...
  • 41 篇 james glass
  • 37 篇 belinkov yonatan
  • 35 篇 zhang zhuosheng
  • 35 篇 demaine martin l...
  • 34 篇 golland polina
  • 32 篇 paulo leitão
  • 31 篇 williams brian c...
  • 31 篇 lozano-pérez tom...
  • 31 篇 shen linlin
  • 29 篇 lynch jayson

语言

  • 7,261 篇 英文
  • 1,425 篇 其他
  • 109 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 2 篇 斯洛文尼亚文
检索条件"机构=LIACC—Artificial Intelligence and Computer Science Laboratory"
8785 条 记 录,以下是611-620 订阅
排序:
Redundant Data Detection and Deletion to Meet Privacy Protection Requirements in Blockchain-Based Edge Computing Environment
收藏 引用
China Communications 2024年 第3期21卷 149-159页
作者: Zhang Lejun Peng Minghui Su Shen Wang Weizheng Jin Zilong Su Yansen Chen Huiling Guo Ran Sergey Gataullin Cyberspace Institute Advanced Technology Guangzhou UniversityGuangzhou 510006China College of Information Engineering Yangzhou UniversityYangzhou 225127China School Math&Computer Science Quanzhou Normal UniversityQuanzhou 362000China Computer Science Department City University of Hong KongHong Kong 999077China School of Computer and Software Nanjing University of Information Science and TechnologyNanjing 21004China Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and TechnologyAnhui UniversityHefei 230601China Department of Computer Science and Artificial Intelligence Wenzhou UniversityWenzhou 325035China Guangzhou University Library Guangzhou UniversityGuangzhou 510006China Central Economic and Mathematics Institute Russian Academy of Sciences MIREA-Russian Technological University Moscow RegionRussia
With the rapid development of information technology,IoT devices play a huge role in physiological health data *** exponential growth of medical data requires us to reasonably allocate storage space for cloud servers ... 详细信息
来源: 评论
Electron charge qubit with 0.1 millisecond coherence time
收藏 引用
Nature Physics 2024年 第1期20卷 116-122页
作者: Zhou, Xianjing Li, Xinhao Chen, Qianfan Koolstra, Gerwin Yang, Ge Dizdar, Brennan Huang, Yizhong Wang, Christopher S. Han, Xu Zhang, Xufeng Schuster, David I. Jin, Dafei Center for Nanoscale Materials Argonne National Laboratory LemontIL United States Pritzker School of Molecular Engineering University of Chicago ChicagoIL United States Computational Research Division Lawrence Berkeley National Laboratory BerkeleyCA United States The NSF AI Institute for Artificial Intelligence and Fundamental Interactions CambridgeMA United States Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology CambridgeMA United States James Franck Institute and Department of Physics University of Chicago ChicagoIL United States Department of Electrical and Computer Engineering Northeastern University BostonMA United States Department of Applied Physics Stanford University StanfordCA United States Department of Physics and Astronomy University of Notre Dame Notre DameIN United States
Electron charge qubits are compelling candidates for solid-state quantum computing because of their inherent simplicity in qubit design, fabrication, control and readout. However, electron charge qubits built on conve... 详细信息
来源: 评论
3D2-Actor: Learning Pose-Conditioned 3D-Aware Denoiser for Realistic Gaussian Avatar Modeling
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Zichen Yang, Hongyu Zhang, Hanchen Chen, Jiaxin Huang, Di School of Artificial Intelligence Beihang University Beijing China Shanghai Artificial Intelligence Laboratory Shanghai China School of Computer Science and Engineering Beihang University Beijing China
Advancements in neural implicit representations and differentiable rendering have markedly improved the ability to learn animatable 3D avatars from sparse multi-view RGB videos. However, current methods that map obser... 详细信息
来源: 评论
DrFER: Learning Disentangled Representations for 3D Facial Expression Recognition
DrFER: Learning Disentangled Representations for 3D Facial E...
收藏 引用
International Conference on Automatic Face and Gesture Recognition
作者: Hebeizi Li Hongyu Yang Di Huang School of Computer Science and Engineering Beihang University Beijing China Institute of Artificial Intelligence Beihang University Beijing China Shanghai Artificial Intelligence Laboratory Shanghai China
Facial Expression Recognition (FER) has consistently been a focal point in the field of facial analysis. In the context of existing methodologies for 3D FER or 2D+3D FER, the extraction of expression features often ge... 详细信息
来源: 评论
Cycle Self-Refinement for Multi-Source Domain Adaptation  38
Cycle Self-Refinement for Multi-Source Domain Adaptation
收藏 引用
38th AAAI Conference on artificial intelligence, AAAI 2024
作者: Zhou, Chaoyang Wang, Zengmao Du, Bo Luo, Yong School of Computer Science Wuhan University China National Engineering Research Center for Multimedia Software Wuhan University China Institute of Artificial Intelligence Wuhan University China Key Laboratory of Multimedia and Network Communication Engineering Wuhan University China Hubei Luojia Laboratory China
Multi-source domain adaptation (MSDA) aims to transfer knowledge from multiple source domains to the unlabeled target domain. In this paper, we propose a cycle self-refinement domain adaptation method, which progressi... 详细信息
来源: 评论
CapText: Large Language Model-based Caption Generation From Image Context and Description
arXiv
收藏 引用
arXiv 2023年
作者: Ghosh, Shinjini Anupam, Sagnik Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology United States
While deep-learning models have been shown to perform well on image-to-text datasets, it is difficult to use them in practice for captioning images. This is because captions traditionally tend to be context-dependent ... 详细信息
来源: 评论
Deriving Language Models from Masked Language Models
arXiv
收藏 引用
arXiv 2023年
作者: Hennigen, Lucas Torroba Kim, Yoon Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory United States
Masked language models (MLM) do not explicitly define a distribution over language, i.e., they are not language models per se. However, recent work has implicitly treated them as such for the purposes of generation an... 详细信息
来源: 评论
Inspecting and Editing Knowledge Representations in Language Models
arXiv
收藏 引用
arXiv 2023年
作者: Hernandez, Evan Li, Belinda Z. Andreas, Jacob Computer Science & Artificial Intelligence Laboratory Massachusetts Institute of Technology United States
Neural language models (LMs) represent facts about the world described by text. Sometimes these facts derive from training data (in most LMs, a representation of the word banana encodes the fact that bananas are fruit... 详细信息
来源: 评论
JTMA: Joint Multimodal Feature Fusion and Temporal Multi-head Attention for Humor Detection  4
JTMA: Joint Multimodal Feature Fusion and Temporal Multi-hea...
收藏 引用
4th Multimodal Sentiment Analysis Challenge and Workshop, MuSe 2023, In conjunction with ACM Multimedia 2023
作者: Li, Qi Xu, Yangyang Zhao, Zhuoer Tang, Shulei Zhang, Feixiang Wang, Ruotong Sun, Xiao Wang, Meng AHU-IAI AI Joint Laboratory Anhui University HeFei China Institute of Advanced Technology University of Science and Technology of China HeFei China School of Computer Science and Information Engineering Hefei University of Technology Institute of Artificial Intelligence Hefei Comprehensive National Science Center ZhongJuYuan Intelligent Technology Co Ltd HeFei China School of Computer Science and Information Engineering Hefei University of Technology Institute of Artificial Intelligence Hefei Comprehensive National Science Center HeFei China
In this paper, we propose a model named Joint multimodal feature fusion and Temporal Multi-head Attention (JTMA) to solve the MuSe-Humor sub-challenge in Multimodal Sentiment Analysis Challenge 2023. The goal of MuSe-... 详细信息
来源: 评论
Temporal-Aware Multimodal Feature Fusion for Sentiment Analysis  4
Temporal-Aware Multimodal Feature Fusion for Sentiment Analy...
收藏 引用
4th Multimodal Sentiment Analysis Challenge and Workshop, MuSe 2023, In conjunction with ACM Multimedia 2023
作者: Li, Qi Tang, Shulei Zhang, Feixiang Wang, Ruotong Xu, Yangyang Zhao, Zhuoer Sun, Xiao Wang, Meng AHU-IAI AI Joint Laboratory Anhui University HeFei China Institute of Advanced Technology University of Science and Technology of China HeFei China School of Computer Science and Information Engineering Hefei University of Technology Institute of Artificial Intelligence Hefei Comprehensive National Science Center ZhongJuYuan Intelligent Technology Co Ltd HeFei China School of Computer Science and Information Engineering Hefei University of Technology Institute of Artificial Intelligence Hefei Comprehensive National Science Center HeFei China
In this paper, we present a solution to the MuSe-Personalisation sub-challenge in the Multimodal Sentiment Analysis Challenge 2023. The task of MuSe-Personalisation aims to predict a time-continuous emotional value (i... 详细信息
来源: 评论