咨询与建议

限定检索结果

文献类型

  • 4,476 篇 会议
  • 4,127 篇 期刊文献
  • 182 册 图书

馆藏范围

  • 8,785 篇 电子文献
  • 4 种 纸本馆藏

日期分布

学科分类号

  • 5,632 篇 工学
    • 4,072 篇 计算机科学与技术...
    • 3,392 篇 软件工程
    • 993 篇 信息与通信工程
    • 943 篇 控制科学与工程
    • 704 篇 生物工程
    • 579 篇 电气工程
    • 560 篇 光学工程
    • 489 篇 生物医学工程(可授...
    • 436 篇 机械工程
    • 375 篇 电子科学与技术(可...
    • 273 篇 化学工程与技术
    • 238 篇 仪器科学与技术
    • 174 篇 土木工程
    • 160 篇 建筑学
    • 145 篇 材料科学与工程(可...
    • 129 篇 交通运输工程
    • 111 篇 动力工程及工程热...
  • 3,058 篇 理学
    • 1,607 篇 数学
    • 886 篇 物理学
    • 830 篇 生物学
    • 566 篇 统计学(可授理学、...
    • 321 篇 化学
    • 259 篇 系统科学
  • 1,446 篇 管理学
    • 752 篇 管理科学与工程(可...
    • 744 篇 图书情报与档案管...
    • 322 篇 工商管理
  • 375 篇 医学
    • 310 篇 临床医学
    • 247 篇 基础医学(可授医学...
    • 168 篇 药学(可授医学、理...
  • 176 篇 法学
    • 160 篇 社会学
  • 97 篇 教育学
  • 90 篇 农学
  • 84 篇 经济学
  • 22 篇 文学
  • 10 篇 艺术学
  • 9 篇 军事学
  • 4 篇 哲学
  • 2 篇 历史学

主题

  • 412 篇 artificial intel...
  • 305 篇 computer science
  • 247 篇 semantics
  • 231 篇 laboratories
  • 151 篇 deep learning
  • 144 篇 training
  • 139 篇 feature extracti...
  • 126 篇 machine learning
  • 122 篇 computational mo...
  • 101 篇 robot sensing sy...
  • 99 篇 image segmentati...
  • 99 篇 computer vision
  • 94 篇 contrastive lear...
  • 94 篇 visualization
  • 91 篇 reinforcement le...
  • 87 篇 robustness
  • 86 篇 speech recogniti...
  • 84 篇 object detection
  • 83 篇 cameras
  • 81 篇 optimization

机构

  • 279 篇 computer science...
  • 217 篇 shanghai artific...
  • 161 篇 computer science...
  • 153 篇 computer science...
  • 139 篇 mit computer sci...
  • 113 篇 computer science...
  • 113 篇 peng cheng labor...
  • 101 篇 computer science...
  • 94 篇 school of comput...
  • 89 篇 college of compu...
  • 89 篇 mit computer sci...
  • 87 篇 school of artifi...
  • 82 篇 institute of art...
  • 75 篇 mit computer sci...
  • 74 篇 moe key lab of a...
  • 73 篇 gaoling school o...
  • 72 篇 school of comput...
  • 68 篇 department of co...
  • 65 篇 school of comput...
  • 64 篇 school of artifi...

作者

  • 124 篇 glass james
  • 124 篇 daniela rus
  • 65 篇 tao dacheng
  • 63 篇 zhao hai
  • 63 篇 demaine erik d.
  • 62 篇 liu yang
  • 57 篇 barzilay regina
  • 47 篇 rus daniela
  • 43 篇 li chenglong
  • 42 篇 kaelbling leslie...
  • 41 篇 james glass
  • 37 篇 belinkov yonatan
  • 35 篇 zhang zhuosheng
  • 35 篇 demaine martin l...
  • 34 篇 golland polina
  • 32 篇 paulo leitão
  • 31 篇 williams brian c...
  • 31 篇 lozano-pérez tom...
  • 31 篇 shen linlin
  • 29 篇 lynch jayson

语言

  • 7,261 篇 英文
  • 1,425 篇 其他
  • 109 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 2 篇 斯洛文尼亚文
检索条件"机构=LIACC—Artificial Intelligence and Computer Science Laboratory"
8785 条 记 录,以下是621-630 订阅
排序:
Tiling with Three Polygons is Undecidable
arXiv
收藏 引用
arXiv 2024年
作者: Demaine, Erik D. Langerman, Stefan Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology United States Computer Science Department Université libre de Bruxelles Belgium
We prove that the following problem is co-RE-complete and thus undecidable: given three simple polygons, is there a tiling of the plane where every tile is an isometry of one of the three polygons (either allowing or ... 详细信息
来源: 评论
VRLVMix: Combating Noisy Labels with Sample Selection based on Loss Variation  4
VRLVMix: Combating Noisy Labels with Sample Selection based ...
收藏 引用
4th International Conference on Big Data, artificial intelligence and Internet of Things Engineering, ICBAIE 2023
作者: Wang, Hailun Tu, Zhengzheng Jiang, Bo Ding, Yuhe Anhui University Institute of Artificial Intelligence Hefei Comprehensive National Science Center AHU-IAI Ai Joint Laboratory Hefei China Anhui University Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Hefei China
Since deep neural networks can fully fit all data, including noisy labels, that is, mislabeled data, this will be detrimental to the robustness and generalization ability of the network. To address this problem, exist... 详细信息
来源: 评论
CONTINUAL IMPROVEMENT OF THRESHOLD-BASED NOVELTY DETECTION
arXiv
收藏 引用
arXiv 2023年
作者: Ejilemele, Abe Mendez-Mendez, Jorge Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology United States
When evaluated in dynamic, open-world situations, neural networks struggle to detect unseen classes. This issue complicates the deployment of continual learners in realistic environments where agents are not explicitl...
来源: 评论
Radar2ECG: Multi-Scale Bottleneck Fusion and Cross-modal Semantic Distillation for Conditional Electrocardiogram Generation from Radar Heart Sound
Radar2ECG: Multi-Scale Bottleneck Fusion and Cross-modal Sem...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Li, Jinye Men, Aidong Liu, Yang Han, Pengda Chen, Qingchao School of Artificial Intelligence Beijing University of Post and Telecommunications China Wangxuan Institute of Computer Technology Peking University China National Institute of Health Data Science Peking University China State Key Laboratory of General Artificial Intelligence Peking University China Beijing Emergency Medical Center China Institute of Medical Technology Peking University China
The field of conditional Electrocardiogram(ECG) generation focuses on generating specified ECGs under given conditions for medical purposes. Existing methods are typically based on conditions of simple inputs like tex... 详细信息
来源: 评论
Non-Gaussian Uncertainty Minimization Based Control of Stochastic Nonlinear Robotic Systems
arXiv
收藏 引用
arXiv 2023年
作者: Han, Weiqiao Jasour, Ashkan Williams, Brian Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology United States
In this paper, we consider the closed-loop control problem of nonlinear robotic systems in the presence of probabilistic uncertainties and disturbances. More precisely, we design a state feedback controller that minim... 详细信息
来源: 评论
Cooperative Multi-source Data Trading
Cooperative Multi-source Data Trading
收藏 引用
2024 IEEE Global Communications Conference, GLOBECOM 2024
作者: Cheng, Jin Ding, Ningning Lui, John C. S. Huang, Jianwei The Chinese University of Hong Kong School of Science and Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China Hong Kong University of Science and Technology Data Science and Analytics Thrust Information Hub Guangzhou China The Chinese University of Hong Kong Department of Computer Science and Engineering Hong Kong The Chinese University of Hong Kong School of Science and Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Key Laboratory of Crowd Intelligence Empowered Low-Carbon Energy Network Csijri Joint Research Centre on Smart Energy Storage Shenzhen China
In the era of big data, data trading significantly enhances data-driven technologies by facilitating data sharing. Despite the clear advantages often experienced by data users when incorporating multiple sources, the ... 详细信息
来源: 评论
Scale‐wise interaction fusion and knowledge distillation network for aerial scene recognition
收藏 引用
CAAI Transactions on intelligence Technology 2023年 第4期8卷 1178-1190页
作者: Hailong Ning Tao Lei Mengyuan An Hao Sun Zhanxuan Hu Asoke K.Nandi School of Computer Science and Technology Xi'an University of Posts and TelecommunicationsShaanxi Key Laboratory of Network Data Analysis and Intelligent ProcessingXi'anChina Xi'an Key Laboratory of Big Data and Intelligent Computing Xi'anChina School of Electronic Information and Artificial Intelligence Shaanxi University of Science and TechnologyXi'anChina School of Computer Central China Normal UniversityWuhanChina Department of Electronic and Electrical Engineering Brunel University LondonLondonUK Xi'an Jiaotong University Xi'anChina
Aerial scene recognition(ASR)has attracted great attention due to its increasingly essential *** of the ASR methods adopt the multi‐scale architecture because both global and local features play great roles in ***,th... 详细信息
来源: 评论
Trust-Region Based Stochastic Variational Inference for Distributed and Asynchronous Networks
收藏 引用
Journal of Systems science & Complexity 2022年 第6期35卷 2062-2076页
作者: FU Weiming QIN Jiahu LING Qing KANG Yu YE Baijia Department of Automation University of Science and Technology of ChinaHefei 230027China Institute of Artificial Intelligence Hefei Comprehensive National Science CenterHefei 230088China School of Computer Science and Engineering and Guangdong Province Key Laboratory of Computational ScienceSun Yat-Sen UniversityGuangzhou 510006China Institute of Advanced Technology University of Science and Technology of ChinaHefei 230027China
Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient *** stochastic variational inference can only be performed in a... 详细信息
来源: 评论
FedDGL: Federated Dynamic Graph Learning for Temporal Evolution and Data Heterogeneity  16
FedDGL: Federated Dynamic Graph Learning for Temporal Evolut...
收藏 引用
16th Asian Conference on Machine Learning, ACML 2024
作者: Xie, Zaipeng Li, Likun Chen, Xiangbin Yu, Hao Huang, Qian Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University Nanjing China College of Computer Science and Software Engineering Hohai University Nanjing China College of Artificial Intelligence and Automation Hohai University Nanjing China
Federated graph learning enhances federated learning by enabling privacy-preserving collaborative training on distributed graph data. While traditional methods are effective in managing data heterogeneity, they typica... 详细信息
来源: 评论
The Immense Impact of Reverse Edges on Large Hierarchical Networks
收藏 引用
Engineering 2024年 第5期36卷 240-249页
作者: Haosen Cao Bin-Bin Hu Xiaoyu Mo Duxin Chen Jianxi Gao Ye Yuan Guanrong Chen Tamás Vicsek Xiaohong Guan Hai-Tao Zhang MOE Engineering Research Center of Autonomous Intelligent Unmanned Systems State Key Laboratory of Intelligent Manufacturing Equipment and TechnologySchool of Artificial Intelligence and AutomationHuazhong University of Science and TechnologyWuhan 430074China School of Mechanical and Aerospace Engineering Nanyang Technological UniversitySingapore 639798Singapore Jiangsu Key Laboratory of Networked Collective Intelligence School of MathematicsSoutheast UniversityNanjing 210096China Department of Computer Science Rensselaer Polytechnic InstituteTroyNY 12180USA Department of Electronic Engineering City University of Hong KongHong Kong 999077China Department of Biological Physics Eötvös UniversityBudapest 1117Hungary MOE Key Laboratory for Intelligent Networks and Network Security School of Automation Science and EngineeringXi’an Jiaotong UniversityXi’an 710049China
Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so *** structure o... 详细信息
来源: 评论